Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 17 (1994), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Two direct but independent approaches were developed to identify the average δ18O value of the water fraction in the chloroplasts of transpiring leaves. In the first approach, we used the δ18O value of CO2 in isotopic equilibrium with leaf water to reconstruct the δ18O value of water in the chloroplasts. This method was based on the idea that the enzyme carbonic anhydrase facilitates isotopic equilibrium between CO2 and H2O predominantly in the chloroplasts, at a rate that is several orders of magnitude faster than the non-catalysed exchange in other leaf water fractions. In the second approach, we measured the δ18O value of O2 from photosynthetic water oxidation in the chloroplasts of intact leaves. Since O2 is produced from chloroplast water irreversibly and without discrimination, the δ18O value of the O2 should be identical to that of chloroplast water. In intact, transpiring leaves of sunflower (Helianthus annuus cv. giant mammoth) under the experimental conditions used, the average δ18O value of chloroplasts water was displaced by 3—10 % (depending on relative humidity and atmospheric composition) below the value predicted by the conventional Craig & Gordon model. Furthermore, this δ18O value was always lower than the δ18O value that was measured for bulk leaf water. Our results have implications for a variety of environmental studies since it is the δ18O value of water in the chloroplasts that is the relevant quantity in considering terrestrial plants influence on the δ18O values of atmospheric CO2 and O2, as well as in influencing the δ18O of plant organic matter.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Chlorophyll fluorescence ; Photoinhibition ; Photosynthesis ; Temperature stress ; Ulva
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have investigated the diurnal response of photosynthesis and variable photosystem II (PSII) chlorophyll fluorescence at 77 K for thalli of the chlorophyte macroalga, Ulva rotundata, grown in outdoor culture and transplanted to an intertidal sand flat in different seasons. The physiological response in summer indicated synergistic effects of high PFD and aerial exposure, the latter probably attributable to temperature, which usually increased by 8 to 10° C during midday emersion. Except at extreme emersed temperatures in summer (38° C), the light-saturated photosynthesis rate (Pm) did not decline at midday. In contrast, light-limited quantum yield of photosynthetic O2 exchange (τ) and the ratio of variable to maximum fluorescence yield (Fv/Fm) reversibly declined during midday low tides in all seasons. Shade-grown thalli exhibited a fluorescence response suggestive of greater photodamage to PSII, whereas sun-grown thalli had greater photoprotective capacity. The fluorescence decline was smaller when high tide occurred at midday, and was delayed during morning cloudiness. These results suggest that the diurnal response to PFD in this shallow water species is modified by tidal and meteorological factors. U. rotundata has a great capacity for photoprotection which allows it to tolerate and even thrive in the harsh intertidal environment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 97 (1994), S. 297-307 
    ISSN: 1432-1939
    Keywords: Photoinhibition ; Rainforest disturbance Photosynthesis ; Leaf turnover
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Disturbance or rainforest is often followed by mass mortality of understorey seedlings. Transitions of shade grown plants to full sunlight can cause reductions in the efficiency with which light is used in photosynthesis, called photoinhibition. In order to assess the influence of photoinhibition on mortality and growth after rainforest disturbance this study examined photoinhibition in both simulated and real forest disturbances in northern Papua New Guinea. In an experiment simulating rainforest disturbance, exposure of shade-grown plants to full sunlight resulted in abrupt decreases in the chlorophyll fluorescence parameter F v/F m that is characteristic of photoinhibition. However, in the well-watered plants used in these experiments there were no fatalities during 3 weeks after exposure to full sunlight. Thus, it is unlikely that photoinhibition, alone, is responsible for seedling fatalities after rainforest disturbances, but more likely that fatalities are due to photoinhibition in conjunction with other environmental stress. There were differences between the response of species to the simulated disturbance that concurred with their preferred habitats. For example, species form the genus Barringtonia, which is commonly found in shaded understorey environments, underwent greater reductions in F v/F m and were slower to recover than species that usually inhabit high solar radiation environments. The extent of photoinhibition and the rate of recovery appeared to be dependent on avoidance of direct solar radiation by altering leaf angles and on increasing maximum photosynthetic rates. A field survey of photoinhibition in man-made rainforest gaps corroborated the findings of the simulated disturbance experiment showing that plant species commonly found in shaded environments showed a greater degree of photoinhibition in forest gaps at midday than those species which are classified as species that benefit from gaps or specialist gap inhabitors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2048
    Keywords: Chlorophyll fluorescence ; Photoinhibition ; Photoprotection ; Ulva (photosynthesis)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The relationships between photoinhibition and photoprotection in high and low-light-grown Ulva were examined by a combination of chlorophyll-fluorescence-monitoring techniques. Tissues were exposed to a computer-controlled sequence of 5-min exposures to red light, followed by 5-min darkness, with stepwise increases in photon flux. Coefficients of chlorophyll fluorescence quenching (1−qP and NPQ) were calculated following a saturating pulse of white light near the end of each 5-min light treatment. Dark-adapted chlorophyll fluorescence parameters (F0 and FV/FM) were calculated from a saturating pulse at the end of each 5-min dark period. Low-light-grown Ulva showed consistently higher 1−qP, i.e. higher reduction status of Q (high primary acceptor of photosystem II), and lower capacity for nonphotochemical quenching (NPQ) at saturating light than did high-light-grown plants. Consequently, low-light plants rapidly displayed photoinhibitory damage (increased F0) at light saturation in seawater. Removal of dissolved inorganic carbon from seawater also led to photoinhibitory damage of high-light-grown Ulva at light saturation, and addition of saturating amounts of dissolved inorganic carbon protected low-light-grown plants against photoinhibitory damage. A large part of NPQ was abolished by treatment with 3 mM dithiothreitol and the processes so inhibited were evidently photoprotective, because dithiothreitol treatment accelerated photoinhibitory damage in both low- and high-light-grown Ulva. The extent of photoinhibitory damage in Ulva was exacerbated by treatment with chloramphenicol (1 mM) without much effect on chlorophyll-quenching parameters, evidently because this inhibitor of chloroplast protein synthesis reduced the rate of repair processes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...