Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (4)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 28 (1993), S. 1919-1936 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Several salient factors influencing the formation of reaction-bonded silicon nitride (RBSN) compacts have been studied. These include the effects of mullite and alumina furnace tubes typically employed during “high-purity” nitridation studies, pre-sintering of green silicon compacts, free powder versus compact nitridation, and the influence of metal/metal oxide additions. The latter studies have provided experimental evidence for enhancement due to dissociated nitrogen, and suggest that (1) β-Si3N4 formation does not necessarily require a liquid phase, (2) atomic nitrogen stimulates β-phase formation, and (3) the liquid phase provides an efficient source for volatile silicon, promoting α-Si3N4. These conclusions are consistent with accepted mechanisms for the formation of the two phases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 28 (1993), S. 2999-3013 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Kinetic analysis of silicon nitridation requires intrinsic single-particle behaviour to be isolated from global or compact effects that typically manifest during the reaction-bonding process. These effects arise from the influence of adjacent particles, which modify the macropore structure as the reaction proceeds. Much of the variation in the published kinetic data can be attributed to compact effects, particle shape, and size distribution, resulting in a myriad of models being reported, each only applicable to the nitridation conditions in which the data were obtained. Our work clearly demonstrates that the intrinsic single-particle nitridation behaviour is well described by a sharp-interface model, with diffusion control (E a = 301.5–310.0 kJmol−1) through an expanding Si3N4 product layer developing on the individual grains. For the nitridation of silicon compacts, the reaction-bonding process can be divided into three fundamental stages: (1) initial devitrification/nucleation, (2) massive nitridation, and (3) termination by further sintering, densification, and coarsening of the Si3N4 product. Factors influencing and controlling each stage are summarized.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 26 (1991), S. 4541-4544 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Available kinetic data for the nitridation of high-purity oxide-free Si powder are analysed. The analysis suggests that the α- and β-phases of Si3N4 are formed by separate and parallel reaction paths, and kinetic expressions for their formation are reported. The formation of the α-phase follows first-order kinetics, while the β-phase is formed by a phase-boundary-controlled rate law. These conclusions are consistent with other kinetic and micrographic analyses reported in the literature.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 11 (1992), S. 1370-1372 
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...