Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0541
    Keywords: Spanning tree ; Steiner tree ; Heuristic algorithm ; Computational geometry ; Rectilinear distance ; Nearest neighbor ; Geographic nearest neighbor ; Decomposable search problem ; Range tree
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract We study the application of the geographic nearest neighbor approach to two problems. The first problem is the construction of an approximately minimum length rectilinear Steiner tree for a set ofn points in the plane. For this problem, we introduce a variation of a subgraph of sizeO(n) used by YaO [31] for constructing minimum spanning trees. Using this subgraph, we improve the running times of the heuristics discussed by Bern [6] fromO(n 2 log n) toO(n log2 n). The second problem is the construction of a rectilinear minimum spanning tree for a set ofn noncrossing line segments in the plane. We present an optimalO(n logn) algorithm for this problem. The rectilinear minimum spanning tree for a set of points can thus be computed optimally without using the Voronoi diagram. This algorithm can also be extended to obtain a rectilinear minimum spanning tree for a set of nonintersecting simple polygons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...