Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (5)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry research 32 (1993), S. 1275-1296 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 40 (1994), S. 1312-1327 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The open-loop optimal control strategy to regulate the crystal-size distribution of batch cooling crystallizers handles input, output, and final-time constraints, and is applicable to crystallization with size-dependent growth rate, growth dispersion, and fines dissolution. The objective function can be formulated to consider solid-liquid separation in subsequent processing steps.A model-based control algorithm requires a model that accurately predicts system behavior. Uncertainty bounds on model parameter estimates are not reported in most crystallization model identification studies. This obscures the fact that resulting models are often based on experiments that do not provide sufficient information and are therefore unreliable. A method for assessing parameter uncertainty and its use in experimental design are presented. Measurements of solute concentration in the continuous phase and the transmittance of light through a slurry sample allow reliable parameter estimation. Uncertainty in the parameter estimates is decreased by data from experiments that achieve a wide range of supersaturation. The sensitivity of the control policy to parameter uncertainty, which connects the model identification and control problems, is assessed. The model identification and control strategies were experimentally verified on a bench-scale KNO3-H2O system. Compared to natural cooling, increases in the weight mean size of up to 48% were achieved through implementation of optimal cooling policies.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 36 (1990), S. 623-626 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 39 (1993), S. 262-287 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: This article discusses the existing linear model predictive control concepts in a unified theoretical framework based on a stabilizing, infinite horizon, linear quadratic regulator. In order to represent unstable as well as stable multivariable systems, the standard state-space formulation is used for the plant model. The incorporation of a nominally stabilizing constrained regulator eliminates the current requirement of tuning for nominal stability. Output feedback is addressed in the well-established framework of the linear quadratic state-estimation problem. This framework allows the flexibility to handle nonsquare systems, noisy inputs and outputs, and nonzero input, output, and state disturbances. This formulation subsumes the integral control schemes designed to remove steady-state offset currently in industrial use. The online implementation of the controller requires the solution of a standard quadratic program that is no more computationally intensive than existing algorithms.
    Additional Material: 22 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 39 (1993), S. 1363-1369 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A systematic formulation of multicomponent/multiphase phase equilibria as a linear algebra problem in the fugacities, mole fractions, partial molar volumes, and partial molar enthalpies is given. The algorithm takes advantage of the Gibbs-Duhem relationships for each phase and a modified Gaussian elimination technique to reduce the system of equations. These algorithmic steps allow current symbolic manipulation packages to generate useful partial derivative relationships in terms of measurable thermodynamic quantities. Features of the algorithm are demonstrated by applying a computer implementation of the method to a simple two-phase/two-component system and to the more complicated examples of a two-phase/three-component supercritical fluid chromatography experiment and a mass-conserving closed system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...