Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (2)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Chemistry of materials 3 (1991), S. 977-983 
    ISSN: 1520-5002
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 25 (1990), S. 4462-4471 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Powder of mullite composition (3Al2O3·2SiO2) has been made by a coprecipitation method. The evolution of mullite in this precursor powder during heat treatment has been studied using differential thermal analysis, electron microscopy and X-ray diffraction techniques. It is shown that during calcination below 1100°C the coprecipitate develops γ-Al2O3 and perhaps cristobalite crystallites within the basic grains, whose morphology is otherwise invariant with temperature. Mullite forms above 1100°C by reaction of these γ-Al2O3 and SiO2 crystallites, and the grain morphology changes markedly. Small exothermic events occur at 1000 and 1250 °C. The former is associated with the decomposition of a small content of aluminosilicate or perhaps with the conversion of γ- to θ-Al2O3, and the latter with mullite formation. For comparison, the behaviour of a polymeric mullite precursor during calcination is also examined. This material showed a large exothermic event at 1000°C which could be associated with the decomposition of the (amorphous) aluminosilicate to crystalline γ-Al2O3 and SiO2, and a small exothermic event at 1250° C due to mullite formation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...