Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (8)
Material
Years
Year
Person/Organisation
Keywords
Language
  • 1
    Title: ¬A¬ quasiresonant smoothing algorithm for solving large highly oscillatory differential equations from quantum chemistry. Zug. Berlin, Freie Univ., Diss. 1994
    Author: Schütte, Christof
    Publisher: Aachen :Shaker,
    Year of publication: 1994
    Pages: 128 S.
    Series Statement: Berichte aus der Mathematik
    Type of Medium: Book
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-26
    Description: Models for occupation dynamics in discrete quantum systems lead to large or even infinite systems of ordinary differential equations. Some new mathematical techniques, developed for the simulation of chemical processes, make a numerical solution of countable systems of ordinary differential equations possible. Both, a basic physical concept for the construction of such systems and the structure of the numerical tools for solving them are presented. These conceptual aspects are illustrated by a simulation of an occupation process from spectroscopy. In this example the structures of rotation spectra observed in infrared spectroscopy are explained and some possibilities for an extension of the model are shown.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-02-27
    Description: In Quantum Chemistry the field of Laser--Assisted Molecular Control'' has received a considerable amount of attention recently. One key problem in this new field is the simulation of the dynamical reaction of a molecule subjected to external radiation. This problem is described by the Schrödinger equation, which, after eigenfunction expansion, can be written in the form of a large system of ordinary differential equations, the solutions of which show a highly oscillatory behaviour. The oscillations with high frequencies and small amplitudes confine the stepsizes of any numerical integrator -- an effect, which, in turn, blows up the simulation time. Larger stepsizes can be expected by averaging these fast oscillations, thus smoothing the trajectories. Standard smoothing techniques (averaging, filtering) would kill the whole process and thus, lead to wrong numerical results. To avoid this unwanted effect and nevertheless speed up computations, this paper presents a quasiresonant smoothing algorithm (QRS). In QRS, a natural splitting parameter $\delta$ controls the smoothing properties. An adaptive QRS--version (AQRS) is presented which includes an error estimation scheme for choosing this parameter $\delta$ in order to meet a given accuracy requirement. In AQRS $\delta$ is permanently adapted to the solution properties for computing the chemically necessary information'' only. The performance of AQRS is demonstrated in several test problems from the field Laser--Assisted Selective Excitation of Molecules'' in which the external radiation is a picosecond laser pulse. In comparison with standard methods speedup factors of the order of $10^2$ are observed.
    Keywords: ddc:000
    Language: English
    Type: doctoralthesis , doc-type:doctoralThesis
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-02-26
    Description: One key problem in modern chemistry is the simulation of the dynamical reaction of a molecule subjected to external radiation. This is described by the Schrödinger equation, which, after eigenfunction expansion, can be written in form of a system of ordinary differential equations, whose solutions show a highly oscillatory behaviour. The oscillations with high frequencies and small amplitudes confine the stepsizes of any numerical integrator -- an effect, which, in turn, blows up the simulation time. Larger stepsizes can be expected by averaging these fast oscillations, thus smoothing the trajectories. This idea leads to the construction of a quasiresonant smoothing algorithm (QRS). In QRS, a natural and computationally available splitting parameter $\delta$ controls the smoothing properties. The performance of QRS is demonstrated in two applications treating the selective excitation of vibrational states by picosecond laser pulses. In comparison with standard methods a speedup factor of 60--100 is observed. A closer look to purely physically motivated quasiresonant approximations such as WFQRA shows some additional advantages of the above smoothing idea. Among these the possibility of an adaptive formulation of QRS via the parameter $\delta$ is of particular importance.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-02-26
    Description: An analysis of relaxation oscillations in local Er-doped optically pumped lasers is reported. It is based on a time dependent rate equation model for a quasi-two-level-system with wavelength dependent emission- and absorption cross-sections. For the first time a numerically reliable simulation of the characteristic laser behaviour was possible: the onset and decay of the oscillations, the time-dependent repetition period and the steady state signal output power. The characteristic waveguide parameters, as the erbium-concentration profile, the polarization dependent pump- and signal mode intensity profiles, the scattering losses, the cavity length and the front and rear reflectivities were all taken into account. The basic formulas are general and can also be used for Er-doped fiber lasers. Mathematically the problem can be characterized as a large boundary value problem, which can approximately be replaced by a stiff initial value problem of ordinary differential equations. The used algorithmic replacement procedure is motivated and discussed in detail. Here, pump- and signal evolution versus time are presented for an planar Er-diffused $\rm Ti$:$\rm LiNbO_{3}$ waveguide laser. The numerically obtained results show a nearly quantitative agreement with experimental investigations. Simultanously they supply knowledge about non-measureable (space-dependent population dynamic of the Er-atoms) and till today not measured data (dynamical response of the laser by a sharp peak in the external pump).
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-08-14
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-08-14
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-08-14
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...