Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (7)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 1 (1994), S. 222-224 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Tilting instability is an instability of convective motion in two-dimensional (2-D) ideal fluid transforming convection into sheared flow. An analytical model of the tilting instability is proposed that clearly exhibits inverse cascade phenomenon, conserving both energy and enstrophy. Obtained solution describes the evolution of the nonlinear stage in which initial fluid convection is transformed completely into the large-scale flow.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 5 (1993), S. 3148-3162 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The modulational instability and collapse of waves in the vicinity of the lower-hybrid resonance including both magnetosonic and lower-hybrid waves are investigated by analytical and numerical methods. The mechanism leading to the modulational instability is the nonlinear coupling of lower-hybrid waves with the much lower-frequency quasineutral density perturbations via the ponderomotive force. The result is a filamentation of the high-frequency field producing elongated, cigar-shaped nonlinear wave packets aligned along the magnetic field with the plasma expelled outside (cavities). The analytical self-similar solutions describing cavity collapse are obtained and compared with the results of numerical simulation for both two- and three-dimensional cavity geometries. It is shown that in three-dimensional solutions the transverse, with respect to the magnetic field, contraction remains prevailing. The possibility of ion acceleration as the result of the lower-hybrid collapse is discussed and detailed comparison is made with the observations of the phenomena in the auroral ionosphere.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 3 (1991), S. 1728-1738 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: One of the main experiments of the Active Magnetospheric Particle Tracer Explorers (AMPTE) [J. Geophys. Res. 91, 10013 (1986)] satellite mission was the release of neutral barium atoms in the solar wind. The barium atoms ionized by photoionization extremely rapidly forming a dense, expanding, plasma cloud that interrupted the solar wind flow creating diamagnetic cavities. On the upstream side of the cavity a region of compressed plasma and enhanced magnetic field was created as the result of being produced by the slowing down and deflection of the solar wind, and magnetic field line draping. Intense electrostatic and magnetic turbulence was observed by both the IRM [J. Geophys. Res. 91, 10 013 (1986)] and UKS [J. Geophys. Res. 91, 1320 (1986)] satellites at the boundary of the diamagnetic cavity, with the most intense waves being detected near the outer boundary of the compressed region. This paper examines how the newly created expanding plasma couples to the solar wind by means of plasma–beam and current-driven instabilities. In particular, it is shown how lower-hybrid and lower-hybrid drift waves are generated by cross-field proton–barium streaming instabilities and cross-field electron currents. The saturation mechanism for these waves is considered to be the modulational instability, this instability can also lead to filamentation and coupling to magnetosonic modes, which are also observed. As the result of modulational instability the k(parallel) component increases, which allows the heating and acceleration of electrons that is consistent with the observations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 4 (1992), S. 3562-3568 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: This paper presents a model of beam–plasma discharge resulting from the quasilinear heating of plasma electrons by Langmuir waves which are excited by beam–plasma interactions. The heating is made possible by the spectral transformation of waves propagating radially from the central beam-occupied region toward the region of lower plasma density. In this paper equations describing the wave spectral density, the distribution function of a high-energy electron tail, and its stationary density profile are obtained and numerically solved; to do so a balanced diffusion and ionization is assumed. The possibility of significant plasma density enhancement in beam–plasma discharge is demonstrated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 3 (1991), S. 1407-1419 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The Cohen–Kulsrud–Burgers equation (CKB) is used to consider the nonlinear evolution of resistive, quasiparallel Alfvén waves subject to a long-wavelength, plane-polarized, monochromatic instability. The instability saturates by nonlinear steepening, which proceeds until the periodic waveform develops an interior scale length comparable to the dissipation length; a fast or an intermediate shock then forms. The result is a periodic train of Alfvén shocks of one or the other type. For propagation strictly parallel to the magnetic field, there will be two shocks per instability wavelength. Numerical integration of the time-dependent CKB equation shows that an initial, small-amplitude growing wave asymptotes to a stable, periodic stationary wave whose analytic solution specifies how the type of shock embedded in the shock train, and the amplitude and speed of the shock train, depend on the strength and phase of the instability. Waveforms observed upstream of the Earth's bowshock and cometary shocks resemble those calculated here.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Earth, moon and planets 60 (1993), S. 31-40 
    ISSN: 1573-0794
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The Giotto spacecraft is scheduled to intercept comet P/Grigg-Skjellerup on July 10, 1992. The observed outgassing rate of this comet is over an order of magnitude smaller than comet Giacobini-Zinner and over two orders of magnitude smaller than that of comet Halley. Consequently, the new data obtained during the upcoming encounter will strengthen our understanding of how the solar wind interaction with comets depends upon the neutral gas production rate. In this brief note, we make predictions of the location of the flow transition regions — i.e., the bow shock and the ionopause, and discuss the expected level of wave turbulence.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-1626
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences , Physics
    Notes: Summary VLF quarter-gyrofrequency emissions, whose experimental characteristics differ from those of discrete plasmaspheric emissions usual during active times, have been observed by low-altitude Intercosmos 24 and Magion 2 satellites within the plasmasphere during periods of quieting geomagnetic activity. A new kind of instability is proposed which could lead to the production of these emissions. It is shown that quasi-electrostatic whistler waves can be generated in the eqquatorial region due to the fan instability, with maximum growth rate and spectral energy density in a frequency band below one half of the equatorial electron gyrofrequency. The observations of low-energy electrons and plasma waves in the equatorial region within or in the vicinity of the plasmapause, which could support our hypothesis experimentally, are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...