Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 69 (1991), S. 6019-6021 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A noninvasive method of magnetic stimulation of the spinal roots was designed. The basic idea is to concentrate induced eddy currents in a target by a pair of opposing pulsed magnetic fields. A figure-eight coil was positioned outside the median of the back so that time varying magnetic fields pass through the body in opposite directions around the target. Magnetic stimulation of the spinal roots of human and a rabbit was carried out. It was found that each spine level can be stimulated selectively, producing electromyographic waves related to both the H-reflex and M-wave. The results indicate that the M-wave can be produced by currents flowing either in the rostral or caudal direction, whereas the H-reflex is only generated by currents flowing in the caudal direction. The H-reflex elicited by magnetic stimulation of nerves in the vicinity of the spine becomes a new tool in diagnosis of neuromuscular system diseases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 69 (1991), S. 6023-6023 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The present study focuses on magnetic fields of the brain activities during sleep, in particular on K-complexes, vertex waves, and sleep spindles in human subjects. We analyzed these waveforms based on both topographic EEG (electroencephalographic) maps and magnetic fields measurements, called MEGs (magnetoencephalograms). The components of magnetic fields perpendicular to the surface of the head were measured using a dc SQUID magnetometer with a second derivative gradiometer. In our computer simulation, the head is assumed to be a homogeneous spherical volume conductor, with electric sources of brain activity modeled as current dipoles. Comparison of computer simulations with the measured data, particularly the MEG, suggests that the source of K-complexes can be modeled by two current dipoles. A source for the vertex wave is modeled by a single current dipole which orients along the body axis out of the head. By again measuring the simultaneous MEG and EEG signals, it is possible to uniquely determine the orientation of this dipole, particularly when it is tilted slightly off-axis. In sleep stage 2, fast waves of magnetic fields consistently appeared, but EEG spindles appeared intermittently. The results suggest that there exist sources which are undetectable by electrical measurement but are detectable by magnetic-field measurement. Such source can be described by a pair of opposing dipoles of which directions are oppositely oriented.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 69 (1991), S. 6023-6023 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We made a functional map of the human motor cortex related to the hand and foot areas by stimulating the human brain with a focused magnetic pulse. We observed that each functional area in the cortex has an optimum direction for which stimulating currents can produce neural excitation. The present report focuses on the mechanism which is responsible for producing this anisotropic response to brain stimulation. We first obtained a functional map of the brain related to the left ADM (abductor digiti minimi muscles). When the stimulating currents were aligned in the direction from the left to the right hemisphere, clear EMG (electromyographic) responses were obtained only from the left ADM to magnetic stimulation of both hemisphere. When the stimulating currents were aligned in the direction from the right to the left hemisphere, clear EMG signals were obtained only from the right ADM to magnetic stimulation of both hemisphere. The functional maps of the brain were sensitive to changes in the direction of the stimulating currents. To explain the phenomena obtained in the experiments, we developed a model of neural excitation elicited by magnetic stimulation. When eddy currents which are induced by pulsed magnetic fields flow in the direction from soma to the distal part of neural fiber, depolarized area in the distal part are excited, and the membrane excitation propagates along the nerve fiber. In contrast, when the induced currents flow in the direction from the distal part to soma, hyperpolarized parts block or inhibit neural excitation even if the depolarized parts near the soma can be excited. The model explains our observation that the orientation of the induced current vectors reflect both the functional and anatomical organization of the neural fibers in the brain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 67 (1990), S. 5477-5477 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have observed a phenomenon that candle flames are pressed down by magnetic fields. We have also observed that flows of gases such as carbon dioxide and oxygen are blocked by magnetic fields. A model, called a "magnetic curtain,'' has been introduced to explain these phenomena. The magnetic curtain is a wall of air which is produced by magnetic fields. We have demonstrated an experiment to show that candle flames are quenched by the magnetic curtain. The present study focuses on the mechanism of the phenomena involving quenching of flames using magnetic fields. An electromagnet with a pair of columnar magnetic poles in which inner sidepieces were hollowed out was used first. Magnetic fields of 1.5 T at the brim gave a gradient of 50–300 T/m in the direction perpendicular to the pole axis. Alcohol was burned in the hollowed space between magnetic poles. Gases around flames in the hollowed space were sampled into gas sensors through an inhalation nozzle. Oxygen, carbon dioxide, and carbon monoxide were simultaneously measured during the combustion of methanol and ethanol. During magnetic field exposures, oxygen concentration decreased, whereas concentrations of carbon dioxide and carbon monoxide increased. However, when flames were quenced in a few seconds, oxygen concentration in the hallowed space was not changed, and very little of carbon dioxide and carbon monoxide were produced. The interception of a small amount of oxygen near the surface of the flames may quench flames. Emission spectra of flames of methanol and ethanol were measured before, during, and after magnetic field exposures, using both uniform and gradient magnetic fields. Intensity of the OH radical was not changed by magnetic fields up to 1.6 T, whereas the emission intensity was increased when the product of magnetic fields and the gradient increased.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 75 (1994), S. 7162-7164 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In this study, we investigated the possible effects of magnetic fields on the fibrinolytic process. Fibrin dissolution was observed and the fibrinolytic activities were evaluated. First, fibrinolytic processes in magnetic fields were investigated by the fibrin plate method. We gathered solutions from the dissolved fibrin, and measured mean levels of fibrin degradation products (FDPs) in solutions. Mean levels of FDPs exposed to 8 T magnetic fields were higher than those not exposed to fields. Second, we carried out an experiment to understand how fibrin oriented in a magnetic field dissolves. FDPs in solutions of dissolved fibrins in fibrin plates were assayed. The result was that fibrin gels formed in a magnetic field at 8 T were more soluble than those not formed in a magnetic field. A model based on the diamagnetic properties of macromolecules was explained, and changes of protein concentrations in a solution in gradient magnetic fields were predicted.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 75 (1994), S. 7174-7176 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The influence of static magnetic fields on the behavior of oxygen dissolved in an aqueous solution was studied in order to clarify the interaction mechanism of dynamic movements of dissolved oxygen with magnetic fields and to broaden the basic understanding of biological effects of magnetic fields. A horizontal type of superconducting magnet with a bore 100 mm in diameter was used. A cylindrical chamber filled with distilled water was exposed to magnetic fields up to 8 T and a gradient of 50 T/m. The spatial distribution of oxygen concentration dissolved in water was measured by a dissolved oxygen meter. A clear redistribution of oxygen concentration was observed, and the dissolved oxygen concentration increased more than 10% around the center of the magnet.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 75 (1994), S. 7181-7181 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The question of whether magnetic fields affect enzymatic activities or not is of considerable interest in biochemistry and in biomagnetics. Xanthine oxidase, contained in liver, lungs, intestine, and other organs, catalyzes the degradation of hypoxanthine to xanthine, and xanthine to uric acid, which is the terminal waste of purine nucleotides in mammals. During the oxidation of xanthine, the enzyme releases superoxide anion radicals as intermediates which reduce ferricytochrome c (Fe3+). Superoxide anion, as well as any type of free radical, is also paramagnetic. The study is focused on whether these magnetically related enzymatic activities can be affected by magnetic fields. There is a possibility that free radicals, as intermediates, can be modified by magnetic fields of specific intensities. In our previously reported study, we examined a possible effect of magnetic fields up to 1.0 T on biochemical reaction catalyzed by xanthine oxidase, and obtained negative results. In the present abstract, we examine the effect of magnetic fields up to 8 T on this oxidation-reduction process. Reduced cytochrome c (Fe2+) has an absorption maximum at 550 nm which can be detected by a spectrophotometer. Xanthine oxidase was assayed by superoxide dismutase—inhibitable reduction of cytochrome c. We measured optical absorbance of reduced cytochrome c by superoxide anion which was produced by the reaction catalyzed by xanthine oxidase. The absorbances of the mixture exposed to an 8 T magnetic field at 25 °C were higher than control samples in the re-oxidation proces of cytochrome c. The results show that the 8 T magnetic fields altered the rate of reduction of cytochrome c by superoxide anion which was produced by the reaction catalyzed by xanthine oxidase. It may conclude that the electron transfer from xanthine to molecular oxygen or the transfer from superoxide anion to cytochrome c, can be affected by the magnetic fields up to 8 T.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 75 (1994), S. 7168-7170 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: This study focuses on the influences of spreading multiple dipoles in the human head upon surface magnetic fields. A source model of the magnetoencephalogram (MEG) activity is proposed. This source model is expressed by spreading multiple dipoles which have time-varying dipole moments. Using this source model, spatio-temporal patterns of MEGs are simulated. Effects of spreading dipoles on spatio-temporal magnetic fields are investigated. The computer simulations show that the wave forms and amplitude of magnetic fields are affected significantly by the spread of the source and the conduction velocity of traveling dipoles. The latency of the peak magnetic field generated by spreading multiple dipoles varies with the measurements points on the surface of the head.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 75 (1994), S. 7177-7179 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: This study focuses on the properties of diamagnetic fluid in static magnetic fields up to 8 T with the gradient of 50 T/m. We used a horizontal type of superconducting magnet with a bore 100 mm in diameter and 700 mm long. We observed the phenomenon that the surface of the water was pushed back by magnetic fields of higher gradients. Two "frozen'' cascades were formed at z=±50–80 mm; the surface of the water near the center of the magnet was parted, and the bottom of the water chamber appeared. The water level at both ends of the chamber was lifted up. In order to investigate the hydrodynamics of diamagnetic fluid in magnetic fields, we made a fluidic circuit with plastic tubing which passed through the superconducting magnet's bore. When magnetic fields in the center of the bore were changed from 0 to 8 T, the flow velocity of distilled water decreased, and the flow was stopped at 8 T. A stress analysis of diamagnetic fluid in magnetic fields was carried out to explain the mechanism of these phenomena. The hydrodynamics of diamagnetic fluid in ∼400 T2/m is able to compare with that of ferromagnetic fluid in weak magnetic fields. Studying the role of diamagnetic fluid in gradient magnetic fields is important in understanding the mechanism of biological effects of magnetic fields.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 75 (1994), S. 7165-7167 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A possible influence of intense magnetic fields on the embryonic development of frogs was studied in reference to a potential hazard in magnetic resonance imaging technology. Some of the most serious hazardous effects that could be induced by intense magnetic fields are teratogenic effects on developing embryos. In the present experiment, the possible influence of intense magnetic fields up to 8 T on the early embryonic development of Xenopus laevis was studied. Embryos were exposed to magnetic fields up to 8 T for the period from the precleavage stage to neurula in a small glass vial. Embryos were then cultured in Brown–Caston's medium until the feeding-tadpole stage. No apparent teratogenic effects were observed when embryos were cultured for 20 h from the stage of uncleaved fertilized egg to the neurula stage under magnetic fields of 8 T. We conclude that static magnetic fields up to 8 T do not appreciably affect the rapid cleavage and the following cell multiplication and differentiation in Xenopus laevis. We have also studied the early embryonic development of Xenopus laevis in a 40 nT magnetic field, or 1/1000 of the earth's magnetic field, and obtained negative results. Thus, again under this very low magnetic field, fertilized eggs developed normally and formed tadpoles with no appreciable abnormality.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...