Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (2)
  • 1
    ISSN: 1432-0533
    Keywords: Ganglioglioma ; Hamartia ; Proliferation ; Ki-67 ; p53
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Gangliogliomas are tumors composed of intimately admixed neuronal and glial components and account for approximately 1% of all brain tumors. Here we report the histopathological findings in 61 gangliogliomas. Epilepsy was the most common presenting symptom. Most gangliogliomas were located in the temporal lobes (74%). Thirteen percent of the gangliogliomas were associated with glioneuronal hamartias. There was considerable variation in neuronal size and density, presence of binucleated neurons, calcifications, desmoplasia, lymphocytic infiltrate, pilocytic differentiation, Rosenthal fibers, location, or histological uniformity. Fifteen percent of the gangliogliomas contained areas of purely astrocytic differentiation. All tumors were examined immunohistochemically for an aberrant p53 tumor suppressor gene product and for the presence of nuclear antigens associated with cell proliferation (Ki-67, Ki-S1, proliferating cell nuclear antigen). In 45 of 61 cases (74%) labeling indices for Ki-67 were less than 1%. Nuclear labeling for Ki-67 was observed exclusively in the astrocytic component. Gangliogliomas with very large neurons had higher Ki-67 labeling indices and occurred in younger patients than gangliogliomas with small-or intermediate-sized neurons. None of the tumors had an aberrant expression of p53. The observations suggest that gangliogliomas may arise from glioneuronal hamartias through neoplastic transformation of the astrocytic component.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0533
    Keywords: Epilepsy ; Gamma aminobutyric acid ; Receptor ; Ammon's horn sclerosis ; Hippocampus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Alterations of gamma aminobutyric acid (GABA)-mediated neurotransmission have been implicated in the pathogenesis of epilepsies. Here we examine the distribution of the GABAA receptor in the hippocampus of 78 surgical specimens from patients with chronic pharmacoresistant focal epilepsies. The receptor was localized immunohistochemically with the monoclonal antibody bd-24 which selectively recognizes the α1 subunit of the GABAA receptor. The results were compared with the receptor distribution of 28 normal hippocampal specimens obtained at autopsy. In the great majority of the surgical specimens a loss of GABAA receptor immunoreactivity was present in CA1 (92.3%), CA4 (78.2%), the dentate granular cell layer (70.5%) and the molecular layer of the dentate gyrus (65.4%). The subiculum revealed a normal staining pattern in all but 4 cases. In no instance did we observe an increase of immunoreactivity in any region or cell population. The decrease of GABAA receptor immunoreactivity was closely related to neuronal loss in the respective specimen and to Ammon's horn sclerosis. There was no correlation between GABAA receptor loss and the patient's age at surgery, duration of seizures, age at onset of seizures and to the presence or absence of secondary generalized tonic clonic seizures. The data suggest that the observed loss of GABAA receptor immunoreactivity is a secondary phenomenon rather than an event that is relevant for the pathogenesis of epileptic seizures.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...