Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Sexual plant reproduction 3 (1990), S. 213-218 
    ISSN: 1432-2145
    Keywords: Generative cell ; Isolation ; Microtubule ; Immunofluorescence microscopy ; Zephyranthes grandiflora
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Microtubule organization in the generative cells of Zephyranthes grandiflora was investigated by immunofluorescence microscopy with a monoclonal anti-α-tubulin. The experimental materials used were generative cells located within pollen grains and tubes (i.e., in situ) as well as those artificially isolated after osmotic shock or grinding treatments of the pollen grains. Diverse microtubule organization patterns were revealed. In situ, the generative cells appeared spindle-shaped and contained mainly longitudinally oriented microtubule bundles, although other types were found as well. After isolation, as the alteration in microtubule patterns took place, the spindle-shaped generative cells became ellipsoidal and then spherical. In the ellipsoidal cells a transitional form consisting of a mixture of microtubule bundles and meshes could be found. In spherical cells the mesh structure appeared to be the predominant pattern. These results indicate that the microtubule cytoskeleton of the generative cells can change easily from one structural form to another in accordance with environmental conditions and may play an important role in determining the cell shape.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Sexual plant reproduction 4 (1991), S. 293-297 
    ISSN: 1432-2145
    Keywords: Generative cell ; Pollen ; Microtubule ; Immunofluorescence microscopy ; Hippeastrum vittatum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The three-dimensional organization of microtubules in generative cells during their development in pollen grains of Hippeastrum vittatum and the dynamic changes that occur were studied by collecting large quantities of fixed and isolated generative cells for immunofluorescence microscopy. The framework configuration and the arrangement pattern of the microtubule organization was investigated. The microtubule framework changed in shape from being spherical at an early stage to being long spindle-shaped at maturity: various transitional forms were observed: ellipsoidal, pear-shaped and short spindle-shaped. The microtubule arrangement making up this framework changed correspondingly from the original network, which was random in distribution, to axially oriented long bundles via an intermediate pattern composed of a mixture of networks with long bundles. However, cells with the same framework configuration might be heterogeneous in microtubule arrangements.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 9 (1990), S. 1126-1128 
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The differentiation of glia in the central nervous system is not well understood. A major problem is the absence of an objective identification system for involved cells, particularly the early-appearing radial glia. The intermediate filament structural proteins vimentin and glial fibrillary acidic protein have been used to define the early and late stages, respectively, of astrocyte development. However, because of the non-specificity of vimentin and the temporal overlap in expression patterns of both proteins, it is difficult to refine our view of the process. This is especially true of the early differentiation events involving radial glia. Using the developmentally-expressed intermediate filament-associated protein IFAP-70/280 kD in conjunction with vimentin and glial fibrillary acidic protein markers, a comprehensive investigation of this problem was undertaken using immunofluorescence microscopy of developing rat spinal cord (E13-P28 plus adult). The phenotypes of the cells were defined on the basis of their immunologic composition with respect to IFAP-70/280 kD (I), vimentin (V) and GFAP (G). A definitive immunotype for radial glia was established, viz, I+/V+/G−; thus reliance upon strictly morphological criteria for this early developmental cell was no longer necessary. Based upon the immunotypes of the cells involved, four major stages of macroglial development were delineated: (1) radial glia (I+/V+/G−); (2) macroglial progenitors (I+/V+/G+); (3) immature macroglia (I−/V+/G+); and (4) mature astrocytes (I−/V+/G+ primarily in white matter and I−/V−/G+, the predominant type in gray matter). It is of interest to note that the cells of the floor plate were distinguished from radial glia by their lack of IFAP-70/280 kD immunoreactivity. Introduction of the IFAP-70/280 kD marker has therefore provided a more refined interpretation of the various differentiation stages from radial glia to mature astrocytes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...