Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 8 (1988), S. 165-179 
    ISSN: 0271-2091
    Keywords: Unsteady laminar boundary layer ; Buoyancy effect ; Non-iterative finite difference method ; Boundary layer singularity ; Separated flow region ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A numerical method is developed to solve the coupled unsteady laminar momentum and thermal boundary layers over a circular cylinder impulsively started from rest. The present non-iterative finite difference method, which requires relatively fewer grid points in the reversed flow region than any other method, can easily handle the separating boundary layer flows. The results indicate that the present method has accuracy comparable with the earlier methods, while consuming computer time approximately one order of magnitude less.The present numerical method allowed investigation of the effect of buoyancy parameter on the starting boundary layer. The time-dependent behaviour of the boundary layer is studied in terms of the appearance of the singularity, the distribution of skin friction and wall heat flux, and the wall position of the inflection point of the velocity profile. The transient as well as buoyancy-dependent patterns of the streamlines and isotherms are also studied.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Communications in Applied Numerical Methods 5 (1989), S. 219-228 
    ISSN: 0748-8025
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: Inviscid transonic flow over a wavy wall with either subsonic or supersonic freestream speeds is studied by solving the Euler equations numerically. The streamwise flow development through a series of shock waves and entropy production are investigated in depth. In the case of supersonic freestream, isentropy contours of both horseshoe and staircase forms are found. The limitations and validity of this inviscid rotational flow model are discussed by comparing the results with those for viscous turbulent flow calculated previously.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Communications in Applied Numerical Methods 4 (1988), S. 665-673 
    ISSN: 0748-8025
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A finite-difference solution for natural convection over a short flat plate heated on both sides is obtained; the plate has an arbitrary inclination angle. The present numerical method is capable of treating the full flow domain efficiently through the use of a plate/plume-fitted co-ordinate system. Correlation between the Nusselt and Rayleigh numbers at intermediate Rayleigh number region, previously obtained only through laborious measurements, is now obtained computationally. Variations of the flow patterns, isotherms and local Nusselt number with the inclination angle and the Rayleigh number are presented Results from a Mach-Zehnder interferometric study are also presented for comparison.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...