Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (4)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 97 (1987), S. 31-42 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The Ivrea zone represents a tilted cross section through deep continental crust. Sm-Nd isotopic data for peridotites from Baldissero and Balmuccia and for a suite of gabbros from the mafic formation adjacent to the Balmuccia peridotite provide evidence for an event of partial melting 607±19 Ma ago in an extended mantle source with ɛ 607 Nd =+0.4±0.3. The peridotites are interpreted as the corresponding melt residue, the lower part of the mafic formation as the complementary melts which underwent further differentiation immediately after extraction. The Finero body represents a complex with layers of phlogopite peridotite, hornblende peridotite, and amphibole-rich gabbro. The isotopic signatures fall into two groups: (1) highly radiogenic Nd and low-radiogenic Sr characterize the phlogopite-free, amphibole-rich rocks, whereas (2) low-radiogenic Nd and highly radiogenic Sr is found in ultramafics affected by “phlogopite metasomatism”. Phlogopite metasomatism in the Ivrea zone is dated by a Rb-Sr whole rock isochron yielding 293±13 Ma. It was fed by K-rich fluids which were probably derived from metasediments. The high initial ɛ 293 Nd value of about +7.5 for phlogopite-free samples indicates a high time-integrated Sm/Nd ratio in the Finero protolith 293 Ma ago. Sm-Nd analyses of metapelites from the paragneiss series yield Proterozoic “crustal residence ages” of 1.2 to 1.8 Ga. Internal Sm-Nd isochrons for three garnetiferous rocks show that closure of garnet at temperatures around 600° C or even lower occurred about 250 Ma ago.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 98 (1988), S. 408-416 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The Ascutney Mountain complex of eastern Vermont, USA, is a composite epizonal pluton of genetically related gabbro to granite intrusives. Nd isotopic data are reported for mafic rocks, granites, and nearby country rock. The parental mafic magma producing the complex 122 m.y. ago had 87Sr/86Sr=0.7039, 143Nd/144Nd=0.512678 (ɛ Nd=+3.8) and δ 18O=6.1‰, indicating a mantle source with time-integrated lithophile element depletion. Uniform initial radiogenic isotope ratios for granites, which are undistinguishable from those for the most primitive gabbro, suggest that the granite magma evolved from the mafic magma without crustal contamination and that the increase in δ 18O, to about 7.8‰, is the result of fractional crystallization. Mafic rocks show a large range in initial 143Nd/144Nd ratio, from about 0.51267 to 0.51236 (ɛ Nd= +3.7 to −2.5), which is correlated with elevated 87Sr/86Sr ratios and δ 18O. These data substantiate the production of mafic lithologies by fractional crystallization of the parental magma accompanied by assimilation of up to about 50% crust. The local country rocks include gneiss and schist and assimilation involved representatives of both rock types. The isotopic and chemical relationships preclude derivation from a single batch of magma undergoing contamination and indicate that a large magma body at depth evolved largely by fractionation with batches of melt issued from this chamber being variably contaminated at higher levels or at the level of emplacement. The Precambrian gneisses of the Chester dome and overlying lower Paleozoic schists have essentially identical Nd isotope systematics which suggest a crustal formation age of about 1.6. b.y. The parental sediments for the schists were apparently derived from a protolith similar to the gneissic basement without appreciable Sm/Nd fractionation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The Balmuccia peridotite massif in the central Ivrea Zone constitutes an upper mantle slice which has been tectonically emplaced into the crust. It represents the residue from partial melting of undepleted mantle material and varies in composition from lherzolite to harzburgite and subordinate dunite. Dikes of websterite and gabbroic pods within the peridotite can be subdivided into an older Crdiopside suite and a younger Al-augite suite. Nd isotopic data on whole rocks of these lithotypes in combination with independent observations suggest that the dikes formed during a Hercynian event about 270 Ma ago. The rocks of the Cr-diopside dikes, in particular, display isotopic signatures similar to those of the lherzolite and represent fractionates from partial melts derived from the lherzolite wall rock. The Sm-Nd data of the pyroxenites and gabbros of the Al-augite suite, in contrast, scatter widely and suggest that partial melting of lherzolite was triggered or at least accompanied by introduction of fluids and/or liquid phases. These fluids or liquids carried exotic isotopic components from elsewhere in the crust-mantle complex, and deposited them within the rocks by metasomatic reactions. Two distinct types of metasomatism must have operated not only within the Balmuccia body, but also in the complex of Finero: The first type of metasomatism introduced mantle-derived volatiles and is responsible for formation of amphibole. The other type has a crustal source and led to formation of phlogopite, which occurs mainly within mantle rocks of Finero, but occasionally, within the Balmuccia body also.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Apparent crustal residence ages indicated by Nd model age data for metamorphic rocks, sediments and granitoids of the Hercynian Fold Belt of Europe vary from 1.3 Ga to 3.0 Ga, but are mainly in the range 1.4–1.7 Ga. 2 Ga basement inliers have been documented previously in northern Spain and islands off northwestern France but, in addition to these, old (∼2–3 Ga) model ages are found along the southern margin of the fold belt. These do not identify old inliers but are interpreted to represent Archeanearly Proterozoic crustal components recycled from a southern source. The Nd data, when considered together with the surface geology and recent single-grain zircon ion microprobe data, argue against a binary mixing of Archean components with new Palaeozoic crustal additions to generate the main 1.4–1.7 Ga model age population. Hercynian Europe comprise mainly recycled Proterozoic components although significant new Palaeozoic additions as well as Archean contributions are indicated. Nd and Sr isotopic data together with previous chemical and petrographic observations allow the recognition of a northern belt of continent margin I-type granitoids grading southwards to inner continent S-type plutons in the eastern half of the fold belt. This felsic plutonic association is used to infer a Hercynian plate configuration involving the attachment of the fold belt to a southern parent cratonic block that the model age data suggest may be of early Proterozoic-Archean age.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...