Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (4)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 27 (1985), S. 1603-1607 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 27 (1985), S. 1411-1417 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The feasibility of the upflow anaerobic sludge bed (UASB) process for the treatment of potato starch wastewater at low ambient temperatures was demonstrated by operating two 5.65-L reactors at 14°C and 20°C, respectively. The organic space loading rates achieved in these laboratory-scale reactors were 3 kg COD/m3/day at 14°C and 4-5 kg COD/m3/day at 20°C. The corresponding sludge loading rates were 0.12 kg COD/kg VSS/day at 14°C and 0.16-0.18 kg COD/kg VSS/day at 20°C.These findings are of considerable practical importance because application of anaerobic treatment at low ambient temperatures will lead to considerable savings in energy needed for operating the process. As compared with various other anaerobic wastewater treatment processes, a granular sludge upflow process represents one of the best options developed so far. Although the overall sludge yield under psychrophilic conditions is slightly higher than under optimal mesophilic conditions, this doesn't seriously hamper the operation of the process. The extra sludge yield, due to accumulation of slowly hydrolyzing substrate ingredients, was 4.75% of the COD input at 14°C and 1.22% of the COD input at 20°C.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Berlin : Wiley-Blackwell
    Acta Biotechnologica 9 (1989), S. 255-267 
    ISSN: 0138-4988
    Keywords: Life Sciences ; Life Sciences (general)
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: A new biotechnological process for sulphide removal is proposed. The process is based on the oxidation of sulphide into elemental sulphur, which can be removed by sedimentation. In this study it was found that elemental sulphur and sulphate are the main oxidation products of the biological sulphide oxidation. The settling characteristics become worse as the sulphide concentration increases, due to polysulphide formation. The start-up phase of this biological system is very short; Only four days are needed to reduce the sulphide concentration of 100 to 2 mg/l at a HRT (Residence time) of 22 minutes. Also some environmental factors were evaluated. The optimal pH is situated in the pH-range 8.0-8.5. Significantly lower conversion rates are found at pH = 6.5 to 7.5 and pH = 9.0, while at pH = 9.5 the sulphide oxidation capacity of the system detoriates. The process temperature was 20°C, although the optimal temperature is situated in the range 25-35°C. No substrate inhibition of sulphide was found at sulphide concentrations up to 100 mg/l.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 27 (1985), S. 1374-1381 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Investigations on the thermophilic anaerobic treatment of high-strength wastewaters (14-65 kg COD/m3) are presented. Vinasse, the wastewater of alcohol distilleries, was used as an example of such wastewaters. Semicontinuously fed digestion experiments at high retention times revealed that the effluent quality of digestion at 55°C is comparable with that at 30°C at similar loading rates. The amount of methane formed per kilogram of vinasse drops almost linearly with increasing vinasse concentrations. This can be attributed to increasing concentrations of inhibitory compounds, resulting in increasing volatile fatty acid (VFA) concentrations in the effluent. The treatment of vinasse was also investigated using upflow anaerobic sludge blanket (UASB) reactors. Thermophilic granular sludge, cultivated on sucrose, was used as seed material. The sludge required a 4-month adaptation period, during which the size of the sludge granules decreased significantly. However, the settling characteristics remained satisfactory. After adaptation, high loading and methane generation rates could be accommodated at satisfactory treatment efficiencies, namely, 86.4 kg COD/m3 day and 26 m3 CH4(STP)/m3 day, respectively. As in the semicontinuously fed digesters, the effluent VFA concentrations were virtually independent of the loading rates applied, indicating that the toxicity of the vinasse is more important than the loading rate in determining the efficiency of the conversion of vinasse to methane.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...