Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (2)
  • 1
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Cells ofSaccharomyces cerevisiae ATCC 4126, immobilized within the macroporous walls of asymmetric hollow-fiber membranes, were alternately perfused with 10% glucose complex medium and with 10% glucose defined medium which was deficient in nitrogen. Using complex growth medium, ethanol productivities during the initial 10 h of culture attained a maximum level of 133 g/l-h based on the total fiber volume (3% ethanol). Productivities during nitrogen deficiency stabilized at 10 g/l-h (0.5 ethanol). In subsequent growth phases, ethanol production rates increased to levels 40–70% of initial growth-phase values, but the ability to regenerate the fermentation activity decreased with culture age. During nitrogen deficiency, the fermentation efficiency declined with a concomitant reduction in the total protein concentration of immobilized cells within the hollow-fiber membranes. The molar ratio of acetaldehyde to ethanol increased seven-fold during nitrogen deficiency, indicating that the overall decline in glycolytic activity was accompanied by preferential reduction in alcohol dehydrogenase activity. The molar ratio of glycerol to ethanol increased two-fold during nitrogen deficiency, and large lipid-like droplets accumulated within the nitrogen-deficient cells. In addition to these findings, we conclude that current hollow-fiber membrane reactors should be limited to cell cultures having low growth rates, low O2 requirements, and low CO2 production rates.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Cells ofSaccharomyces cerevisiae ATCC 4126, immobilized within the macroporous walls of asymmetric hollow-fiber membranes, were alternately perfused with 10% glucose complex medium and with 10% glucose defined medium which was deficient in nitrogen. Using complex growth medium, ethanol productivities during the initial 10 h of culture attained a maximum level of 133 g/l-h based on the total fiber volume (3% ethanol). Productivities during nitrogen deficiency stabilized at 10 g/l-h (0.5 ethanol). In subsequent growth phases, ethanol production rates increased to levels 40–70% of initial growth-phase values, but the ability to regenerate the fermentation activity decreased with culture age. During nitrogen deficiency, the fermentation efficiency declined with a concomitant reduction in the total protein concentration of immobilized cells within the hollow-fiber membranes. The molar ratio of acetaldehyde to ethanol increased seven-fold during nitrogen deficiency, indicating that the overall decline in glycolytic activity was accompanied by preferential reduction in alcohol dehydrogenase activity. The molar ratio of glycerol to ethanol increased two-fold during nitrogen deficiency, and large lipid-like droplets accumulated within the nitrogen-deficient cells. In addition to these findings, we conclude that current hollow-fiber membrane reactors should be limited to cell cultures having low growth rates, low O2 requirements, and low CO2 production rates.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...