Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of medicinal chemistry 31 (1988), S. 1965-1968 
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 98 (1987), S. 275-283 
    ISSN: 1432-1424
    Keywords: Paramecium ; calcium ; cilia ; mutants ; Ca2+ pump ; Ca2+ buffering ; ion channels
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary A new mutant ofParamecium tetraurelia, k-shyA, was characterized behaviorally and electrophysiologically. The mutant cell exhibited prolonged backward swimming episodes in response to depolarizing conditions. Electrophysiological comparison of k-shyA with wild type cells under voltage clamp revealed that the properties of three Ca2+-regulated currents were altered in the mutant. (i) The voltage-dependent Ca2+ current recovered from Ca2+-dependent inactivation two- to 10-fold more slowly than wild type. Ca2+ current amplitudes were also reduced in the mutant, but could be restored by EGTA injection. (ii) The decay of the Ca2+-dependent K+ tail current was slower in the mutant. (iii) The decay of the Ca2+-dependent Na+ tail current was also slower in the mutant. All other membrane properties studied, including the resting membrane potential and resistance and the voltage-sensitive K+ currents, were normal in k-shyA. Considered together, these observations are consistent with a defect in the ability of k-shyA to reduce the free intracellular Ca2+ concentration following stimulation. The possible targets of the genetic lesion and alternative explanations are discussed. The k-shy mutants may provide a useful tool for molecular and physiological analyses of the regulation of Ca2+ metabolism inParamecium.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-2592
    Keywords: Interleukin-2 ; interleukin-2 receptor ; lymphocyte subsets ; lymphocyte activation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Following activationin vitro, peripheral blood mononuclear cells (PBMC) express cell-associated interleukin-2 receptors (IL-2R) and also release soluble IL-2R into culture supernatants. The present studies were undertaken to define which normal cells were responsible for the release of soluble IL-2Rin vitro. Both cell-associated and soluble IL-2R were quantitatively measured with a “sandwich” enzyme-linked immunoassay employing two monoclonal antibodies. PBMC were separated into populations of surface immunoglobulin-negative cells (T cells and monocytes) and surface immunoglobulin-positive cells (B cells and monocytes), and the T-cell population was further separated into OKT4-positive (OKT4+) cells and OKT4-negative (OKT4−) cells. Following activation with phytohemagglutinin, pokeweed mitogen, and the monoclonal antibody OKT3, large amounts of soluble IL-2R were released by PBMC, unseparated T cells, OKT4+ T cells, and OKT4− T cells. The population containing B cells and monocytes made small but readily detectable amounts of soluble IL-2R when stimulated with these T-cell mitogens; likely the result of contaminating T cells in the population. However, when highly purified B cells were stimulated withStaphylococcus aureus Cowan and recombinant IL-2, they also released small amounts of soluble IL-2R. The release of soluble IL-2R by T cells appeared monocyte dependent when OKT3, but not phytohemagglutinin, was employed for activation, and monocytes themselves released no detectable IL-2R under the conditions employed. These studies define the cellular requirements for the release of soluble IL-2Rin vitro and demonstrate that such receptors are released by B cells, T cells, and both OKT4+ and OKT4− T-cell subsets.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 6 (1986), S. 256-272 
    ISSN: 0886-1544
    Keywords: ciliary motility ; cAMP regulation ; swimming speed ; membrane potential ; detergent models ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The membrane potential of Paramecium controls the frequency and direction of the ciliary beat, thus determining the cell's swimming behavior. Stimuli that hyperpolarize the membrane potential increase the ciliary beat frequency and therefore increase forward swimming speed. We have observed that (1) drugs that elevate intracellular cyclic AMP increased swimming speed 2-3-fold, (2) hyperpolarizing the membrane potential by manipulation of extracellular cations (e.g., K+) induced both a transient increase in, and a higher sustained level of cyclic AMP compared to the control, and (3) the swimming speed of detergent-permeabilized cells in MgATP was stimulated 2-fold by the addition of cyclic AMP. Our results suggest that the membrane potential can regulate intracellular cAMP in Paramecium and that control of swimming speed by membrane potential may in part be mediated by cAMP.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...