Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (3)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 45 (1985), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Cholesterol ester hydrolase activities previously have been identified in brain and linked to the production of myelin, which has very low levels of esterified cholesterol. We have studied two cholesterol ester hydrolase activities (termed the pH 6.0 and pH 7.2 activities) in cultures derived from 19- to 21-day-old dissociated fetal rat brains and in developing rat brain. In vivo the levels of both the pH 6.0 and pH 7.2 activities began to increase by about 10 postnatal days, reached maximal levels at 20 days (20 and 1.5 nmol/h/mg protein, respectively), and thereafter remained nearly constant (pH 6.0) or decreased somewhat before becoming constant (pH 7.2). In contrast, in the cultures the pH 6.0 cholesterol ester hydrolase activity was low until 21 days in culture (DIC; 20 nmol/h/mg protein), increased to a peak activity at 31 DIC (60 nmol/h/mg protein), remained high for 24 days, and finally decreased (18 nmol/h/mg protein at 63 DIC); the pH 7.2 cholesterol ester hydrolase activity was very low until 20 DIC, increased to a peak activity at 31 days (3 nmol/h/mg protein), and thereafter decreased to a lower level (2 nmol/h/mg protein) that was maintained for about 24 days before decreasing (0.7 nmol/h/mg protein at 63 DIC). Therefore, (a) the time courses of appearance of both cholesterol ester hydrolase activities were delayed by 10–14 days relative to that seen in vivo, and (b) the specific activities observed in the cultures were transiently two- to three-fold higher than in rat brain, but then declined to levels characteristic of whole brain homogenates. Subcellular fractionation of the cultures demonstrated that the pH 7.2 cholesterol ester hydrolase activity, along with myelin basic protein and 2′,3′-cyclic nucleotide-3′-phosphohydrolase activity, was enriched in a membrane fraction collected at an interface between 0.32 M and 0.9 M sucrose; the pH 6.0 cholesterol ester hydrolase activity, in contrast, was enriched in the microsomal fraction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 45 (1985), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Galactolipid metabolism was investigated as a function of development in primary cultures initiated from 19–21-day-old dissociated fetal rat brain. Significant amounts of galactocerebrosides, sulfatides, and monogalactosylglycerides were synthesized and accumulated by 8 days in culture. Thereafter the synthetic rates and levels of these galactolipids increased rapidly, reaching maximal values ∼22–29 days in culture. Galactolipids containing nonhydroxy or 2-hydroxy fatty acid were both synthesized at approximately equal rates. The initial rates of synthesis, investigated at 15, 29, and 50 days in culture, were three- to fivefold higher for galactocerebrosides than for sulfatides and two- to threefold higher than for monogalactosylglycerides. The total number of cells staining with antisera against galactocerebroside of sulfatide also increased very rapidly between 8 and 22 days in culture, reaching levels of 4–5 million cells per seeded fetal brain. The amount of galactocerebroside or sulfatide per cell stained with the corresponding antiserum increased severalfold from 10 to 27 days in culture and remained high until at least 36 days in culture (the latest time point examined). Thus, the temporal expression of galactolipid accumulation in the cell cultures was comparable to that occurring in rat brain, but some important quantitative reductions in the levels of accumulation per cell in culture were noted. In addition, in contrast to normal brain in which galactolipid synthetic rates are reduced after the period of most active myelination, in culture both synthesis and turnover of these galactolipids remained high, suggestive of a partial arrest in myelin maturation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 49 (1987), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Clonal cell line D6P2T, subcloned from an ethylnitrosourea-induced tumor line D6 of the rat peripheral nervous system, has been characterized with particular attention to galactolipid metabolism. Galactosylcerebroside and sulfatide synthesis and expression on the cell surface are highly regulated in D6P2T cells by mechanisms involving serum-and cyclic AMP-mediated pathways. These cells also express 2′,3′-cyclic nucleotide 3′-phosphohydrolase (Wolfgram protein Wla) and laminin. In contrast, myelin basic protein and antigen HNK-1 were not detected. Line D6P2T appears to be a semi-differentiated Schwann cell model, which offers interesting possibilities for studies of galactolipid synthesis, transport, and sorting.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...