Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (2)
  • 1
    ISSN: 1432-072X
    Keywords: ALA dehydratase ; Chlorophyll ; Cyanobacterium ; Gabaculin ; Phycocyanin ; Synechococcus ; Tetrapyrrole
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Gabaculin (3-amino 2,3-dihydrobenzoic acid) inhibited the growth of cyanobacteria but not of other prokaryotes. Exposure of growing cultures ofSynechococcus 6301 to 50 μM gabaculin resulted in an immediate and complete inhibition of the synthesis of chlorophylla and phycocyanin. With 8 μM gabaculin, tetrapyrrole synthesis was suppressed for approximately 10 h and then resumed at a lower rate than in untreated organisms. The effect of 50 μM gabaculin was reversed by transferring organisms to inhibitor-free medium; chlorophylla synthesis began within 5 h and exponential growth was re-established after about 25 h. Compared with 4,6-dioxoheptanoic acid (DA) and laevulinic acid (LA), gabaculin was a much more potent inhibitor of tetrapyrrole synthesis inSynechococcus 6301. The catalytic activity of δ-aminolaevulinic acid (ALA) dehydratase in vitro was inhibited by DA and LA but not by 1 mM gabaculin. However, the specific activity of the dehydratase was much lower in organisms exposed to the inhibitor for 36 h. Growing cultures and cell suspensions ofSynechococcus 6301 exposed to DA excreted appreciable quantities of ALA. In contrast, relatively small amounts of ALA accumulated in the presence of gabaculin alone and this inhibitor blocked the excretion of ALA caused by DA. This suggests that the primary effect of gabaculin is the specific inhibition of the C5 pathway for the biosynthesis of ALA.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4935
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Gabaculin (3-amino 2,3-dihydrobenzoic acid) is shown to be a very potent inhibitor of chlorophyll formation inHordeum vulgate. Exposure of leaf segments to 30/μM gabaculin results in an 80% inhibition of chlorophyll synthesis, and this is paralleled by a decrease in carotenoid. Dual-inhibitor studies with dioxoheptanoic acid, which is an inhibitor of δ⇐inolaevulinic acid dehydratase, show that gabaculin inhibits an earlier step than dioxoheptanoic acid and affects δ-aminolaevulinic acid synthesis rather than its subsequent metabolism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...