Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 111 (1999), S. 2857-2860 
    ISSN: 1089-7690
    Quelle: AIP Digital Archive
    Thema: Physik , Chemie und Pharmazie
    Notizen: The chemical dynamics to form cyanopropyne, CH3CCCN (X 1A1), and cyanoallene, H2CCCHCN (X 1A′), via the neutral–neutral reaction of the cyano radical, CN (X 2Σ+), with methylacetylene, CH3CCH (X 1A1), is investigated under single collision conditions in a crossed molecular beam experiment at a collision energy of 24.7 kJ mol−1. The laboratory angular distribution and time-of-flight spectra of the C4H3N products are recorded at m/e=65, 64, 63, and 62. The reaction of d3-methylacetylene, CD3CCH (X 1A1), with CN radicals yields reactive scattering signal at m/e=68 and m/e=67 demonstrating that two distinct H(D) atom loss channels are open. Forward-convolution fitting of the laboratory data reveal that the reaction dynamics are indirect and governed by an initial attack of the CN radical to the π electron density of the β carbon atom of the methylacetylene molecule to form a long lived CH3CCHCN collision complex. The latter decomposes via two channels, i.e., H atom loss from the CH3 group to yield cyanoallene, and H atom loss from the acetylenic carbon atom to form cyanopropyne. The explicit identification of the CN vs H exchange channel and two distinct product isomers cyanoallene and cyanopropyne strongly suggests the title reaction as a potential route to form these isomers in dark molecular clouds, the outflow of dying carbon stars, hot molecular cores, as well as the atmosphere of hydrocarbon rich planets and satellites such as the Saturnian moon Titan. © 1999 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 80 (1996), S. 4354-4357 
    ISSN: 1089-7550
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: The depth distribution of sulphur near the Si/GaAs(110) interface has been measured using particle induced x-ray emission (PIXE) in conjunction with Rutherford backscattering spectrometry (RBS); ozone oxidation and a hydrofluoric acid step-etching technique were used for sequential removal of Si/GaAs atomic layers. The depth resolution was also calibrated via 16O(d,p)17O nuclear reaction analysis and x-ray photoemission spectroscopy. PIXE/RBS measurements found a half monolayer of sulphur on the H2Sx passivated GaAs(110) surface. Upon deposition of 15 A(ring) silicon on the S-passivated GaAs(110), the total amount of sulphur remained constant as compared to that before Si deposition. However, no orientated S–Ga bonds were detected via the x-ray absorption measurement and the depth profile revealed that the sulphur atoms diffused into both the GaAs substrate and the Si heterolayer. © 1996 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 81 (1997), S. 3304-3310 
    ISSN: 1089-7550
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: The quaternary III–V compound semiconductor GaInAsP is an important material for many optoelectronic devices, the surface of which generally needs to be passivated in the fabrication of such devices. Thus understanding the surface chemistry and monitoring the surface band gap states after oxidation and sulphur passivation have become necessary. Further, understanding the effect of ion bombardment on the GaInAsP surface during dielectric deposition is also of importance for device fabrication. In this study, quaternary GaInAsP(100) surfaces were subjected to UV/ozone and wet chemical treatments, dilute HF etching, sulfur passivation, and Ar ion bombardment. The composition and the relative movement of the surface Fermi level (EFs) of the surfaces were measured by x-ray photoemission spectroscopy (XPS) after oxidation, HF etching, sulfur passivation, and ion bombardment of surfaces. It was found that oxidation by ozone exposure formed multiple oxide phases of all the constituent elements. Both HF etching and sulfur passivation treatments were effective in generating surfaces having almost no oxide. It was also found that while sulfur passivation combined with an ultrahigh vacuum annealing at 300 °C reduced the surface band bending on n-type GaInAsP(100), it inverted p-type GaInAsP to n-type. An L-edge absorption spectrum of the sulfur passivated surface confirmed the presence of a sulfur layer. Further, it was found that an Ar+ ion bombardment pins the EFs near the midgap for both n- and p-type GaInAsP surfaces. © 1997 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 110 (1999), S. 7119-7122 
    ISSN: 1089-7690
    Quelle: AIP Digital Archive
    Thema: Physik , Chemie und Pharmazie
    Notizen: The chemical dynamics to cyanoacetylene, HCCCN(X 1Σ+), formation via the neutral–neutral reaction of cyanogen, CN(X 2Σ+), with acetylene, C2H2(X 1Σg+), is investigated in a crossed molecular beams experiment at a collision energy of 21.1 kJ mol−1. The laboratory angular distribution and time-of-flight spectra of the HCCCN product are recorded at m/e=51 and 50. Forward-convolution fitting of our data reveals that the reaction dynamics are governed by an initial attack of the CN radical to the π electron density of the acetylene molecule to form a HCCHCN collision complex on the 2A′ surface. The four heavy atoms are rotating in plane almost perpendicular to the total angular momentum vector J around the C axis of the complex which undergoes C–H bond rupture through a tight transition state to HCCCN and H. The H atom is emitted almost perpendicular to the HCCCN axis to yield a nearly "sideways" peaking of T(θ). The explicit identification of the cyanoacetylene reaction product represents a solid background for the title reaction to be included with more confidence in reaction networks modeling the chemistry in dark, molecular clouds, outflow of dying carbon stars, hot molecular cores, as well as the atmosphere of hydrocarbon rich planets and satellites such as the Saturnian moon Titan. © 1999 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 110 (1999), S. 6091-6094 
    ISSN: 1089-7690
    Quelle: AIP Digital Archive
    Thema: Physik , Chemie und Pharmazie
    Notizen: The reaction of atomic carbon, C(3Pj) with per-deutero benzene, C6D6 is investigated at an average collision energy of 32.1 kJ mol−1 using the crossed molecular beams technique combined with a universal mass spectrometric detector. Product angular distributions and time-of-flight spectra of C7D5 and C7D6 are recorded. Forward-convolution fitting of our time-of-flight data (TOFs) and laboratory angular distribution (LAB) together with high level electronic structure calculations on the singlet and triplet C7D6 potential energy surfaces are consistent with the formation of the per-deutero-1,2-didehydrocycloheptatrienyl radical, C7D5. No C7D6 adduct is found experimentally. Our investigations indicate that the carbon atom attacks the benzene molecule face without an entrance barrier to form an initial complex. This undergoes a ring opening to give triplet cycloheptatrienylidene as a C7D6 intermediate. The latter fragments without exit barrier via a C–D bond rupture to yield the per-deutero-1,2-didehydrocycloheptatrienyl isomer, C7D5, and a D atom. This barrierless route for the destruction of benzene may be involved in the synthesis of higher cyclic hydrocarbon derivatives in the interstellar medium, in outflows of dying carbon stars, in hydrocarbon-rich planetary atmospheres, as well as in oxygen-poor combustion flames. © 1999 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    ISSN: 1089-7623
    Quelle: AIP Digital Archive
    Thema: Physik , Elektrotechnik, Elektronik, Nachrichtentechnik
    Notizen: The performance of the 1 m Seya–Namioka monochromator (1 m-SNM) beam line at SRRC has been measured and reached the designed goal. The beam line throughput (photon flux) has been measured by a calibrated silicon photodiode and is close to the theoretical values. The resolving power of this beam line has been measured from the studies of the core absorption of Ar and Ne and the Rydberg states of Mg vapor gas, and has reached the theoretical values. The improvement of the cooling system of the first mirror is also described. © 1995 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    ISSN: 1089-7623
    Quelle: AIP Digital Archive
    Thema: Physik , Elektrotechnik, Elektronik, Nachrichtentechnik
    Notizen: The layout and first data on the performance of the soft x-ray bending magnet beamline 6 m high energy spherical grating monochromator (6m-HSGM) at SRRC are described. The 6m-HSGM beamline, which covers photon energies from 110 to 1500 eV, is based on the Dragon concept with spherical gratings, and a movable exit slit. During the first performance tests, core-excitation thresholds of Ar and Ne, and K thresholds of N and O for gas phase CO, N2, and O2 have been recorded with resolutions which rank among the best reached so far in the soft x-ray region. © 1995 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    ISSN: 1089-7623
    Quelle: AIP Digital Archive
    Thema: Physik , Elektrotechnik, Elektronik, Nachrichtentechnik
    Notizen: In our laboratory a novel and convenient technique has been developed to generate an intense pulsed cyano radical beam to be employed in crossed molecular beam experiments investigating the chemical dynamics of bimolecular reactions. CN radicals in their ground electronic state 2Σ+ are produced in situ via laser ablation of a graphite rod at 266 nm and 30 mJ output power and subsequent reaction of the ablated species with molecular nitrogen, which acts also as a seeding gas. A chopper wheel located after the ablation source and before the collision center selects a 9 μs segment of the beam. By changing the delay time between the pulsed valve and the choppper wheel, we can select a section of the pulsed CN(X2Σ+) beam choosing different velocities in the range of 900–1920 ms−1 with speed ratios from 4 to 8. A high-stability analog oscillator drives the motor of the chopper wheel (deviations less than 100 ppm of the period), and a high-precision reversible motor driver is interfaced to the rotating carbon rod. Both units are essential to ensure a stable cyanogen radical beam with velocity fluctuations of less than 3%. The high intensity of the pulsed supersonic CN beam of about 2–3×1011 cm−3 is three orders of magnitude higher than supersonic cyano radical beams employed in previous crossed molecular beams experiments. This data together with the tunable velocity range clearly demonstrate the unique power of our newly developed in situ production of a supersonic CN radical beam. This versatile concept is extendible to generate other intense, pulsed supersonic beams of highly unstable diatomic radicals, among them BC, BN, BO, BS, CS, SiC, SiN, SiO, and SiS, which are expected to play a crucial role in interstellar chemistry, chemistry in the solar system, and/or combustion processes. © 1999 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 2 (1995), S. 3757-3763 
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: A kinetic analysis of ion temperature gradient modes with the trapped ion bounce resonance in tokamaks is presented under the long-wavelength limit. The dispersion relations of the toroidal and slab branches are derived by employing two-scale expansion, and their eigenfunctions are obtained analytically. The growth rates and stability thresholds of the more unstable toroidal and slab ion modes are evaluated in the cases with and without trapped electron dynamics. It is found that the minority trapped ion bounce resonances possess approximately the same effects on the toroidal and slab ion modes as the majority ion transit resonances. The nonadiabatic trapped electron dynamics does also strongly affect the toroidal ion mode while it affects the slab branch, the trapped electrons have a destabilizing effect on these ion modes. In addition, the effects of trapped electron temperature gradient on the trapped ion temperature gradient modes are considered. For high collisionality, the trapped electron temperature gradient destabilizes toroidal and slab ion modes. On the contrary, it plays a role of stabilizing to the toroidal and slab ion modes in the case of very low collisionality. © 1995 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 2 (1995), S. 1529-1539 
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: The effects of energetic ions on the electric field structure and the energy deposition of kinetic Alfvén wave (KAW) in a tokamak plasma are considered. A cylindrical geometry is adopted and a linearized kinetic model including the bulk plasma and the energetic ions is established. These effects of fusion alpha particles (abbreviated, alphas) in deuterium–tritium (D–T) tokamak plasmas are numerically analyzed. The energetic ions tend to alter the wave structure and the energy deposition. The absorption of the kinetic Alfvén wave by the bulk plasma depends sensitively on both the velocity distribution of alphas and the spatial profile of the alpha particle density, as well as on the frequency of the injected wave. Numerical results of the wave structure and the power absorption are given for the parameters of D–T plasmas. The present studies lead to the following discoveries: (1) The slowing-down alpha particle distribution reduces the KAWs energy deposition and the Maxwellian alphas have hardly any influence over it; (2) the more the (slowing-down) alphas near the resonant layer, the more heavily they prevent the KAWs power absorption by the bulk plasma; (3) the lower frequency of the injected wave within the range of KAWs continuum, the more heavily the KAWs structure and power absorption by the bulk plasma are affected by alpha particles; and (4) the energy deposition decreases rapidly as the total number of alphas increases. © 1995 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...