Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 19 (1984), S. 1397-1405 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The effect of mechanical grinding on the structural transformation of titanium dioxide was studied by using several anatase samples prepared from different starting materials and with various particle sizes. Three anatase samples were prepared by hydrolysis of Ti(O·i-C3H7)4, TiCl4, and TiOSO4·2H2O and one is commercial reagent grade anatase. Each of the as-prepared or heat-treated samples (1.0 g) was ground in a mortar of sintered alumina for up to 96 h in air. The stability of brookite synthesized by grinding was examined by heating in air and under hydrothermal pressure. From the relative amount of the phases estimated by the measurement of the integrated intensity of X-ray line profile and of X-ray crystallite size, DTA and TG, IR spectra, and observation by electron microscope, it is concluded that: 1. the transformation proceeds by a consecutive process from anatase to rutile through brookite by grinding; 2. the smaller the initial particle size of anatase, the more stable the intermediate phase of brookite; 3. the very fine crystals of 5∼20 nm of anatase can be grown to 50∼150 nm of rutile by grinding for 96 h; 4. the rate process of the transformation depends on the initial particle size and is independent of the difference in starting materials or of surface adsorbants; 5. an appropriate lattice distortion introduced by grinding is considered to stabilize the brookite phase; and 6. the lattice constant and the density of brookite synthesized by grinding,a 0=0.5447±0.005 nm,b 0=0.9150±0.0005 nm,c 0=0.5141±0.0005 nm, andD x =4.14 g cm−3 agree with those in natural brookite.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Journal of High Resolution Chromatography 2 (1979), S. 400-404 
    ISSN: 0935-6304
    Keywords: Gas chromatography ; Capillary, glass ; Low temperature plasma etching ; Polymer film on the inner surface from organosilicone monomer ; Flexibility of this new method discussed ; Discharge chamber described ; Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A novel method is described for the preparation of stable glass capillary columns (glass open tubular columns), including the etching and formation of a polymer film on the inner glass capillary surfaces. The approach used here is based on low-temperature plasma etching and polymerization. Under the influence of a field of radio frequency discharge, low pressure gases of fluoric compounds, introduced into the glass capillary tube, generate excited fluorine radicals which etch the inner surface. The plasma of organosilicone monomer in the glass capillary yields a uniform polymerized film on the inner surface. The resultant material functions as a good stationary phase for glass capillary gas chromatography (GC2). The inner surfaces treated with such a plasma, can be studied by means of a scanning electron microscope (SEM). The flexibility of this method permits the use of various stationary phases and surface modification.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...