Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5036
    Keywords: C2H2 reduction ; Intact-plant assay ; Millet ; Nitrogen fixation ; Nitrogenase activity ; Sorghum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary A non destructive intact-plant assay for estimating nitrogenase activity (C2H2 reduction) of pot-grown sorghum and millet plants is described. Plants with intact shoots sustained more activity than plants whose tops were removed prior to the assay. With this technique individual plants can be assayed several times during their life cycle. The C2H2 reduction was linear up to 16h incubation in this assay procedure. More rapid diffusion of C2H2 was achieved by injection through a Suba seal in the bottom of the pot. The equlibration of injected C2H2 in the gas phase of the pots filled with sand and sand:FYM media was completed within 1 h. Significantly higher nitrogenase activity and better growth of sorghum and millet plants occurred when plants were grown in a mixture of sand and farmyard manure (FYM) than when plants were grown in vermiculite, soil, or sand + soil medium. Nitrogenase activity and plant growth were greater in a mixture of sand with 2 and 3% FYM than with 0.5 and 1% FYM. Activity was higher when the plants were incubated at 33°C and 40°C than at 27°C. Activity also increased with increasing soil moisture. There were significant differences amongst 15 sorghum cultivars screened for associated nitrogenase activity. This new technique has good prospects for screening cultivars of millet, sorghum and other grain crops for their nitrogen-fixing ability.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: Pearl millet ; Pennisetum americanum ; Leeke ; Phosphorus response ; VA mycorrhiza
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Six mycorrhizal fungi were tested as inoculants for pearl millet (Pennisetum americanum Leeke) grown in pots maintained in a greenhouse. VAM fungi varied in their ability to stimulate plant growth and phosphorus uptake. Inoculation withGigaspora margarita, G. calospora andGlomus fasciculatum increased shoot drymatter 1.3 fold over uninoculated control. In another pot trial, inoculation withGigaspora calospora andGlomus fasciculatum resulted in dry matter and phosphorus uptake equivalent to that produced by adding phosphorus at 8 kg/ha. The influence of inoculatingGigaspora calospora on pearl millet at different levels of phosphorus fertilizer (0 to 60 kg P/ha) as triple superphosphate in sterile and unsterile alfisol soil was also studied. In sterile soil, mycorrhizal inoculation increased dry matter and phosphorus uptake at levels less than 20 kg/ha. At higher P levels the mycorrhizal effect was decreased. These studies performed in sterilized soil suggest that inoculation of pearl millet with efficient VAM fungi could be extremely useful in P deficient soils. However, its practical utility depends on screening and isolation of fungal strains which perform efficiently in natural (unsterilized) field conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5060
    Keywords: Arachis hypogaea ; groundnut ; nonnodulation ; Rhizobium strains ; genetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Genetic studies of nonnodulation in groundnut were carried out in a cross, NC 17×PI 259747, with a single Rhizobium strain, NC 92, and a native Rhizobium population. The normal nodulation of the parents, F1 generations and backcross progenies, and the F2 segregation for nodulation and nonnodulation confirmed that nonnodulation in groundnut is controlled by two duplicate recessive genes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...