Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1615-6102
    Keywords: Microtubules ; Mitosis ; Plastids ; Preprophase Band ; Isoetes ; Selaginella
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Ultrastructural observations on monoplastidic root tip cells ofIsoetes andSelaginella demonstrate two important phenomena associated with preprophasic preparation for mitotic cell division, 1. the preprophase band and 2. precise orientation of the dividing plastid relative to the preprophase band. Both of these phenomena accurately predict the future plane of cell division. The plastid divides in a plane parallel to the spindle and each cell inherits a single plastid which caps the telophase nucleus. When succesive transverse divisions occur, the plastid migrates prior to prophase from a position near an old transverse wall to a lateral position in the cell. The plastid is oriented with its median constriction precisely intersected by the plane of the preprophase band. When a longitudinal division follows a transverse division, the plastid remains in its position adjacent to an old transverse wall where it is bisected by the plane of the longitudinally oriented preprophase band microtubules.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 116 (1983), S. 115-124 
    ISSN: 1615-6102
    Keywords: Microtubules ; Moss ; MTOC ; Sporogenesis ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Microtubule systems appear sequentially at the distal and proximal poles of tetrad members during mid-sporogenesis in the mossTetraphis pellucida Hedw. The distal microtubule system emanates from a microtubule organizing center (MTOC) located between the single plastid and the nucleus. The distal MTOC and associated microtubules, which appear immediately after cytokinesis, are ephemeral and do not appear to be associated with the deposition of exine occuring at the same time. The proximal microtubule system, which appears slightly later than the distal system, is a more stable component of mid-sporogenesis. The proximal MTOC is an irregularly lobed, patelliform aggregation of electron-dense granules located beneath the plasma membrane at the proximal spore pole. Several bundles of microtubules radiate from the proximal MTOC and traverse the cell, enclosing the nucleus in an cone of microtubules. The proximal microtubule system is thought to function in aperture development and organelle migration. The relatively large nucleus migrates a short distance in the small spore early in the tetrad stage and maintains its acentric position at the proximal pole throughout later stages of sporogenesis. The plastid migrates later in the tetrad stage from its meiotic position parallel to the distal surface to a position perpendicular to the distal surface with one tip in close proximity to the proximal MTOC. The proximal microtubule system reaches its maximum development by the end of the tetrad stage and all micrographic evidence of it is lost in the maturation stages of late sporogenesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 106 (1981), S. 273-287 
    ISSN: 1615-6102
    Keywords: Microtubules ; Polarity ; Spore development ; Trematodon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Young spores of the mossTrematodon longicollis Mx. are highly polar. Immediately after meiotic cytokinesis an extensive system of microtubules associated with the single plastid develops under the entire distal face. Following exine initiation on the distal surface a microtubule system is elaborated at the site of aperture development on the proximal surface. Both plastid and nucleus move from distal to proximal pole and are attached to microtubules of the proximal system. Microtubules underlie the plasma membrane as it withdraws from the exine in the initiation of both the surrounding annulus and central aperture pore. The central pore enlarges to form a bowl-shaped concavity in which a fibrillar plug develops basipetally. The annulus expands into a fibrillar-filled protrusion surrounding the central pore. The mature aperture consists of a central pore plug covered by a thin roof of exine and separated from the surrounding annulus by exine lamellae. The aperture of the mature spore is obscured by development of the ornate exine and is not a prominent feature of the mature spore surface.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1615-6102
    Keywords: Meiosis ; Microtubules ; Polarity ; Ultrastructure ; Mosses
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary An extensive system of microtubules develops during meiotic prophase in the mossRhynchostegium serrulatum (Hedw.)Jaeg. &Sauerb. Development of the cytoskeleton can be traced to early prophase when the nucleus is acentric and the single plastid divides into four plastids. The cytoskeletal microtubules are associated with equidistant positioning of the four plastids at the distal tetrad poles and with migration of the nucleus to a central position in the sporocyte. The cytoskeleton, which interconnects plastids and encloses the nucleus, contributes to the establishment of moss sporocyte polarity. Just prior to metaphase I evidence of the prophase cytoskeleton is lost as the bipolar metaphase I spindle develops in association with discrete polar organizers located in opposite cleavage furrows between plastids.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...