Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Conformational analysis of triple helics of a type of collagen was performed with typical collagen tripeptide sequences based on Gly-Pro-Ala, Gly-Ala-Hyp, and Gly-Ala-Ala. During energy minimization, the possibility of continual deformation of the pyrrolidine cycle was taken into account in order to achieve better accuracy in the resulting structure. The (Gly-Pro-Ala)n structure is almost isomorphic to the (Gly-Pro-Hyp)n structure obtained in the previous work [Tumanyan, V. G. & Esipova, N.G. (1982) Biopolymers 21, 475-497]. For a collagen-type structure, the optimal conformation of (Gly-Ala-Hyp)n tends to have a decreased unit twist (t = 15°), although the energy advantage with respect to the conformation with t = 45° is not so significant. A similar situation is observed for (Gly-Ala-Ala)n. In this case, the energy decrease during unwinding to t = 15° from t = 45° is quite small. The conformations of (Gly-Ala-Hyp)n and (Gly-Ala-Ala)n with t = 15° exhibit a similarity with a triple complex of polyproline II helices - a noncoiled coil such as (Gly-Pro-Hyp)n and (Gly-Pro-Ala)n. A similar structure may be postulated for subcomponent cq1 of the first component of a human complement containing substantial Gly-X-Pro and Gly-X-Y tripeptide derivatives in the primary structure (X, Y = any amino acid). The results suggest that the observed helical symmetry of collagen (t = 36°) is a consequence of superposition of diffraction patterns (for sufficiently long segments) from various helices (t varies from ∼15° for Gly-X-Hyp and Gly-X-Y to ∼56° for Gly-Pro-Ala). For short alternating segments, some unification of different helical structures is possible.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Double-helical polynucleotide conformations, poly(dA)·poly(dT), poly(d(A-T))·poly(d(T-A))·poly(dG)·poly(dC), and poly(d(G-C))·poly(d(C-G)) are analyzed by the atom-atom potential method. The energy optimization is carried out in the space of eight independent geometric parameters using analytical procedures for the constraints, taking into account the flexibility of the β-D-deoxyribose rings. At the first stage, the full screening of atomic partial charges was assumed. The structures of the calculated B and the A forms of DNA are characterized by low energy and absence of short contacts; the dihedral angles are near the average values in the monomers. With the typical energy difference of 3-5 kcal/mol nucleotide pairs in all cases, the B form is more preferable as compared to the A form. At the final step the effect of the Coulomb term is evaluated for poly(dA)·poly(dT) using various values of the effective dielectric constant (ε = 28, 24, 20, 18, 14, 12, 10, 8, 6, 4, and 1). If ε ≤24, the energy optimization leads A to B. We discuss the stereochemical details of the intermediate conformations on the A-B path and hypothesize the nature of stability of the A and the B forms and the mechanism of the A-B transition.
    Additional Material: 3 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...