Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (4)
  • 1975-1979  (4)
Material
  • Electronic Resource  (4)
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 278 (1979), S. 855-857 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Demineralised bone matrix powder prepared from rat diaphyses was transplanted subcutaneously in the anterior thoracic region of 28-35-d-old, male rats of Long-Evans strain as described previously4. The day of transplantation was designated as day 0. On different days after transplantation, the rats ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 263 (1976), S. 514-515 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Fig. 1 Photomicrographs of histological sections of transformation ossicles from control (a) and hypophysectomised (b) rats stained with haematoxylin and eosin. a, Haematopoietic cells on day 26 in a control rat. b, Scattered basophilic cells in a hypophysectomised rat. Hypophysectomy on day 0 (x ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 29 (1979), S. 15-20 
    ISSN: 1432-0827
    Keywords: Alkaline phosphatase ; 45Ca incorporation ; Mineralization ; Bone marrow
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary The effect of magnesium deficiency on bone cell differentiation and bone formation was investigated using in vivo matrix-induced endochondral ossification as a test system. Demineralized bone matrix was implanted subcutaneously in young (35-day-old) male Long-Evans rats that had been fed a semisynthetic Mg-deficient diet (50 ppm Mg) for 7 days. Plasma Mg levels were reduced to 25–30% of control values at that time. Control rats were pairfed the same diet, supplemented to contain 1000 ppm Mg. The implants were harvested 7, 9, 11, 15, and 20 days after implantation and analyzed for Mg and Ca content,45Ca incorporation, and alkaline phosphatase levels. At each stage, plaques (implants) removed from Mg-deficient rats showed retardation in cartilage and bone differentiation and matrix calcification. Magnesium content was markedly reduced when compared to the control plaques. Histological appearance of the matrix-induced plaques confirmed the retardation in bone development and mineralization suggested by the chemical indicators. Most marked was the virtual absence of bone marrow in 20-day-old plaques in Mg-depleted rats. These data show that bone cell differentiation can occur in a severely Mg-depleted environment, although the onset of mineralization and bone remodeling was delayed and bone marrow differentiation was impaired.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 27 (1979), S. 275-279 
    ISSN: 1432-0827
    Keywords: Proline ; Cartilage ; Bone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary Proline biosynthetic and degradative enzymes are unevenly distributed in differentiated mammalian tissues. Activities of the synthetic enzymes are relatively high in collagenous tissues, whereas activities of the degradative enzymes are high in noncollagenous tissues. In order to further characterize tissue-specific proline biosynthesis and degradation, we have determined proline enzyme activities during cartilage and bone formation induced by demineralized bone matrix. We can thus follow temporal changes in enzyme activity in a single tissue as different cell types develop. Ornithine aminotransferase and pyrroline-5-carboxylate reductase have peaks of activity which correlate with maximal type II collagen synthesis by chondrocytes. Both enzymes also are active during bone formation. In contrast, proline oxidase and pyrroline-5-carboxylate dehydrogenase are present at low levels and do not change as new cell types appear. Arginase activity peaks during the first 3 days and then rapidly decreases by the time cartilage and bone formation begin. These observations further substantiate the importance of proline biosynthesis in collagenous tissues. The close correlation between ornithine aminotransferase activity and type II collagen synthesis suggests that the pathway from ornithine to proline may be especially important during formation of type II collagen.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...