Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (1)
  • 1975-1979  (2)
Material
Years
Year
  • 1
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The structure of a benthic microbial food web and its seasonal changes were studied in the shallow brackish waters of the island of Hiddensee, northeastern Germany, at two sites in close proximity by monthly or bimonthly sampling from July 1995 to June 1996. Abundance and biomass of phototrophic and non-phototrophic bacteria, heterotrophic flagellates (HF) and ciliates as well as the biomass of microphytobenthos were determined in the upper 0.3 cm sediment layer. Abundance of organisms showed strong positive correlation with water temperature, with the exception of the bacteria. Non-phototrophic bacterial numbers ranged from 7 × 108 to 6.7 × 109 cells cm−3 and phototrophic bacterial abundance from 4 × 107 to 2.7 × 108. Heterotrophic protist abundance ranged from 8 × 103 to 104 × 103 ind cm−3 for HF and from 39 to 747 ind cm−3 for ciliates. The biomass partitioning demonstrated the primary importance of non-phototrophic bacteria (min. 0.83, max. 84.87 μg C cm−3), followed by the microphytobenthos (min. 1.32, max. 50.93 μg C cm−3). The heterotrophic protists contributed roughly the same fraction to the total microbial biomass, with the biomass of the HF being slightly higher (HF 0.23 to 1.76 μg C cm−3, ciliates 0.04 to 1.17 μg C cm−3). Taxonomic classification of the benthic HF revealed the euglenids to be the most important group in terms of abundance and biomass, followed by thaumatomastigids and kinetoplastids. Other important groups were apusomonads, cercomonads, pedinellids and cryptomonads. The structure of the HF assemblage showed strong seasonal changes with euglenids being the most abundant taxa in summer, while apusomonads and thaumatomastigids were predominant in winter. Similar to the pelagic microbial food web, benthic picophototrophic bacteria were occasionally abundant, and the feeding modes of heterotrophic protists exhibited a great variety (predominantly omnivores, bacterivores, herbivores or predators). Filter-feeding HF were of little importance. Contrary to the pelagic environment, a top-down control on total benthic bacterial numbers by HF seemed unlikely at the studied stations which were characterised by muddy sand.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Berlin : Periodicals Archive Online (PAO)
    Deutsche Zeitschrift für Philosophie. 26:4 (1978) 421 
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 67 (1978), S. 127-138 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Oxygen Fugacity measurements were carried out on chromites from the Eastern Bushveld Complex (Maandagshoek) and are compared with former measurements on chromites from the western Bushveld Complex (Zwartkop Chrome Mine). These results together with those of Hill and Roeder (1974) yield the following conditions of formation for the massive chromitite layers: Western Bushveld Complex (Zwartkop Chrome Mine) $$\begin{gathered} Layer{\text{ }}T(^\circ C) p_{O_2 } (atm) \hfill \\ LG3{\text{ 1160}} - {\text{1234 10}}^{ - {\text{5}}} - 10^{ - 7.6} \hfill \\ LG4{\text{ 1175}} - {\text{1200 10}}^{ - 6.35} - 10^{ - 7.20} \hfill \\ LG6{\text{ 1162}} - {\text{1207 10}}^{ - 6.20} - 10^{ - 7.50} \hfill \\ \hfill \\ \end{gathered} $$ Eastern Bushveld Complex (Farm Maandagshoek) $$\begin{gathered} {\text{LXI 1115}} - {\text{1150 10}}^{ - 7.80} - 10^{ - 8.80} \hfill \\ ( = {\text{Steelpoort Seam)}} \hfill \\ {\text{LX 1125 10}}^{ - 8.25} \hfill \\ {\text{V 1120 10}}^{ - 8.55} \hfill \\ {\text{LII 1120 10}}^{ - 8.0} - 10^{ - 8.60} \hfill \\ \end{gathered} $$ The comparison of the data shows, that the chronitite layers within each particular sequence were formed under approximately identicalp o 2- andT-conditions. The chromites from the western Bushveld Complex, however, were formed at higher temperatures and higher oxygen fugacities than the chromites from the eastern Bushveld Complex. Fromp o 2-T-curves of disseminated chromites and the temperatures derived above, the following conditions of formation for the host rocks were obtained: Western Bushveld Complex $$T = 1200^\circ {\text{C; }}p_{{\text{o}}_{\text{2}} } = 10^{ - 7.25} - 10^{ - 7.50} $$ Eastern Bushveld Complex $$T = 1125^\circ {\text{C; }}p_{{\text{o}}_{\text{2}} } = 10^{ - 8.50} - 10^{ - 9.25} $$ Consequently, the host rocks in the Zwartkop-Chrome-Mine, were formed under higher temperatures and higher oxygen fugacities than the host rocks at Maandagshoek. The rock sequence in the Zwartkop-Chrome-Mine therefore originated in an earlier stage of the differentiation of the Bushveld magma. Comparison of the chromites from the host rocks with the chromites from massive layers supports Ulmer's (1969) thesis that an increase of the oxygen fugacity is responsible for the formation of massive chromitite layers. The values in this investigation show that increases of only about 0.5–1.0 log units are necessary to enhance chromitite layer formation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...