Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1975-1979  (5)
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 18 (1979), S. 24-28 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 15 (1976), S. 1119-1127 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Fluctuations in backbone dihedral angles in the α-helical conformation of homopolypeptides are studied based on an assumption that the conformational energy function of a polypeptide consisting of n amino-acid residues can be approximated by a 2n-dimensional parabola around the minimum point in the range of fluctuations. A formula is derived that relates 〈ΔθiΔθj〉, the mean value of the product of deviations of dihedral angles φi and ψi (collectively designated by θi) from their energy minimum values, with a matrix inverse to the second derivative matrix F,n of the conformational energy function at the minimum point. A method of calculating the inverse matrix Fn-1 explicitly is given. The method is applied to calculating 〈ΔθiΔθj〉 for the α-helices of poly(L-alanine) and polyglycine. The autocorrelations 〈(Δφi)2〉 and 〈(Δψi)2〉 at 300°K are found to be about 66 deg2 and 49 deg2, respectively, for poly(L-alanine), and 84 deg2 and 116 deg2, respectively, for polyglycine. The length of correlations of fluctuations along the chain is found for both polypeptides to be about eight residues long.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 15 (1976), S. 2137-2153 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: By using the static correlations of fluctuations in the dihedral angles of the α-helices of polyglycine and poly(L-alanine) calculated previously, geometrical fluctuations of a section (consisting of up to 18 peptide units) of the α-helices of infinite length are calculated. These fluctuations are found to differ in some respects (e.g., the dependence of amplitudes on the length of section) from those of a circular rod made of homogeneous continuous material. However, the moduli of the mechanical strengths (tensile Young's modulus, bending Young's modulus, and the shear modulus) of a circular rod are calculated, whose geometrical fluctuations are approximately equal to the fluctuations of a section consisting of 18 peptide units. They are of the order of 1011 dyn/cm2. The tensile rigidity, flexural rigidity, and torsional rigidity are calculated to be 1.20 × 10-3 dyn, 2.46 × 10-19 dyn·cm2 and 1.79 × 10-19 dyn·cm2 for polyglycine, and 1.96 × 10-3 dyn, 4.05 × 10-19 dyn·cm2 and 3.28 × 10-19 dyn·cm2 for poly(L-alanine), respectively.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 17 (1978), S. 1373-1379 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Based on the assumption that the conformational energy surface of a protein molecule can be approximated near the global minimum point by a multidimensional parabola, conformational fluctuations in the native state are discussed. In this approximation the conformational fluctuations can be viewed as excitations of coupled harmonic oscillations of dihedral angles. For the purpose of estimating the range of frequencies vibrations, globular proteins are assumed to made of homogeneous continuous elastic material. The number of vibrational modes in such an elastic body, with the wavelength no less than the characteristic length of an amino acid residue, are estimated roughly to be three times the number of amino acid residues in a protein, which is slightly less than the number of variable dihedral angles in a protein. Their frequencies, when converted to the wavenumber of corresponding light, are found to range from 1.8 × 10 cm-1 to 2.1 × 102cm-1 for a protein with the diameter d = 40 Å, when Young's E = 1011 dyne/cm2 is assumed. A significant fraction of the coupled vibrations of dihedral angles in real globular proteins are collective ones, i.e., those involving the whole protein molecules. Based on these results, it concluded that the depth of the global minimum s at least 150 Kcal/mol.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A three-dimensional lattice model of protein designed to assimilate lysozyme is introduced. An attractive interaction is assumed to work between preassigned specific pairs of units, when they occupy the nearest-nighbor lattice points. The behavior of this lattice lysozyme is studied by a Monte Carlo simulation method. Because of the specific interunit interactions,“native state” of the lattice lysozyme is stable at low temperatures. Conformational fluctuations in the native state are observed to occur at both termini and loop regions of the main chain existing on the surface. The process of unfolding and denatured states of this model are discussed. Complete refolding from a denatured state was not observed. However, by starting from partially folded structures, the native conformation could be attained. From these observation it is concluded that, in the process of folding of proteins as simplified in a lattice model, nulceation is a rate-limiting factor. The artificial character of this model and possible improvement are discussed.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...