Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1975-1979  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 10 (1976), S. 283-294 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: A new biomaterial containing covalently bound hyaluronidase was prepared. An application of this enzyme membrane is to improve the performance of an implantable fuel cell. Hyaluronic acid is a contributor to the viscosity of tissue fluids but can be a potential fuel source because of its sugar content. The incorporation of immobilized hyaluronidase would not only contribute to a more available fuel supply by splitting hyaluronic acid but, perhaps more importantly, enhance the rate of mass transport of fuel, O2, and reaction products by reducing the viscosity near the electrode membranes. Hyaluronidase was bound to Sepharose gel and its thermoplastic membrane after activation by cyanogen bromide. Fourteen and 22% of the activities were recovered from the gel and membrane, respectively. The activity of the bound enzyme was stable for six months at 0°C. The addition of hyaluronic acid, 1 mg/ml, to a typical implantable type bioautofuel cell in vitro increased external solution viscosity from 1.1 to 2.5-2.8 cP and reduced voltage output under 10 kΩ by 60% in 3 hr. When the hyaluronidase bound membrane was placed at the anode, viscosity of the glucose-hyaluronic acid solution was lowered to 1.8 cP and the cell output increased to the original level of a glucose-fueled cell in 3 hr. Glucosamine-equivalent released from hyaluronic acid at the electrode was 3.1 mg after 22.5 hr. This represents 90% of the theoretical consumption. Restoration of the cell output was probably a combination of the enhanced transport of fuel, O2 and products, and/or appearance of a new fuel, glucosamine-equivalent.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Glucose oxidase, catalase, and bovine serum albumin were co-immobilized with glutaraldehyde around a platinum screen or around a single platinum - iridium wire. The potential difference between this dual enzyme electrode and a Ag/AgCl reference electrode was proportional to the logarithm of the glucose concentration over the range from 10 to about 150 mg glucose per 100 ml in buffered solution at pH 7.4 and 37°C. The enzyme electrode responded in serum only if coated with a semipermeable film, such as cellulose acetate, to exclude serum macromolecules. The potentiometric results were similar to those obtained with the two enzymes co-immobilized in polyacrylamide gel around a platinum screen or with only one of the enzymes, glucose oxidase, covalently coupled to a platinum screen. The results so far suggest that these potentiometric enzyme electrodes may have sufficient specificity for glucose for development of a continuous in vivo glucose sensor.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...