Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1970-1974  (1)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 20 (1973), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The relationship of cell size and contractile vacuole efflux to osmotic stress was studied in Tetrahymena pyriformis strain W, after transfer into fresh solutions iso- or hypoosmotic to the growth medium. Microscopic measurements of the cell and contractile vacuole dimensions, made with an image-sharing ocular at 27 C, allowed the calculation of the cell size and shape and the vacuolar efflux rate which provide a measure of osmoregulation. The contractile vacuole cycles have no homeostatic oscillations. In 0.03–0.10 osmolar solutions, the cell size and shape are constant while the vacuolar efflux rate has an inverse linear dependence upon extracellular osmolarity. Regression analyses indicate that for cells with systole faster than 0.1 sec (the major part of the population), it is only the final diastolic volume of the contractile vacuole that is related to osmotic stress while the frequency of systole is independent of osmotic stress and has a constant period of 7.7 ± 0.2 sec. Therefore, osmotic stress upon Tetrahymena is regulated by a corresponding change in the filling rate of its contractile vacuole to allow an unaltered cell size and shape. Kinetic measurements of vacuoles during diastole fit the model (dV/dt = K1-K2A), where (dV/dt) is the vacuolar filling rate and (A) is the vacuolar surface area. This dependence of vacuolar volume upon its surface area may be ascribed either to elastic components of the vacuolar membrane or to an increasing leakiness of this membrane during diastole. Mitochondrial inhibitors were used to observe the energy requirements of vacuolar operation and of intracellular secretion of water.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...