Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1965-1969  (3)
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial and engineering chemistry 6 (1967), S. 587-592 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science Part A-1: Polymer Chemistry 4 (1966), S. 869-879 
    ISSN: 0449-296X
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The polymerization and the polymerizabilities of indene, benzofuran, and 1,2-dihydronaphthalene are discussed from the point of view of ring strain, ring stabilization, and steric hindrance in the transition state. Monomer reactivities of these olefins were estimated from copolymerization with styrene and from the rate of addition of iodine bromide in acetic acid. Rates and degrees of polymerization are compared with monomer reactivities and resonance energies of indene, 1,2-dihydronaphthalene, and benzofuran as a measure of ring strain and stabilization. It is found that indence is 1.5-2.0 times more reactive than styrene. This high reactivity of indene is attributed to the ring strain in the monomer state and to the low amount of steric hindrance in the transition state of the coplanar five-membered cyclic olefin. 1,2-Dihydronaphthalene is strained and therefore reactive, but propagation to higher molecular weight products is impeded due to the steric hindrance. The reactivity of benzofuran is decreased by conjugative stabilization of C=C double bonds at the reaction site.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science Part A: General Papers 3 (1965), S. 2567-2578 
    ISSN: 0449-2951
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Steric and electronic effects of the β-methyl group on monomer reactivity have been studied by copolymerization of styrenes and β-methylstyrenes. Steric hindrance of the β-methyl group in the transition state of homopolymerization is so great that the rate of the propagation reaction is considered to be depressed by as much as 1/10-1/20 of the corresponding styrene derivatives. In contrast to this, steric hindrance of the β-methyl group in cross propagation reactions with styrene is found to be very small. The monomer reactivity itself of β-methylstyrenes is a little lower than that of corresponding styrenes. This lowered reactivity of β-methylstyrenes is considered to be due to the electronic effect of the β-methyl group.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...