Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 107 (1997), S. 10288-10310 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Analysis of the nuclear spin relaxation rates of lipid membranes provides a powerful means of studying the dynamics of these important biological representatives of soft matter. Here, temperature- and frequency-dependent 2H and 13C nuclear magnetic resonance (NMR) relaxation rates for vesicles and multilamellar dispersions of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) in the liquid–crystalline state have been fitted simultaneously to various dynamic models for different positions of the acyl chains. The data include 2H R1Z rates (Zeeman order of electric quadrupolar interaction) acquired at 12 external magnetic field strengths from 0.382 to 14.6 T, corresponding to a frequency range from ωD/2π=2.50–95.3 MHz; and 2H R1Q rates (quadrupolar order of electric quadrupolar interaction) at 15.3, 46.1, and 76.8 MHz. Moreover, 13C R1Z data (Zeeman order of magnetic dipolar interaction) for DMPC are included at six magnetic field strengths, ranging from 1.40 to 17.6 T, thereby enabling extension of the frequency range to effectively (ωC+ωH)/2π=938.7 MHz. Use of the generalized approach allows formulation of noncollective segmental and molecular diffusion models, as well as collective director fluctuation models, which were tested by fitting the 2H R1Z data at different frequencies and temperatures (30 °C and 50 °C). The corresponding 13C relaxation rates were predicted theoretically and compared to experiment, thus allowing one to unify the 13C and 2H NMR data for bilayer lipids in the fluid state. A further new aspect is that the spectral densities of motion have been explicitly calculated from the 2H R1Z and R1Q data at 40 °C. We conclude that the relaxation in fluid membrane bilayers is governed predominantly by relatively slow motions, which modulate the residual coupling remaining from faster local motions (order fluctuations). Only the molecular diffusion model, including an additional slow motional process, and the membrane deformation model describing three-dimensional collective fluctuations fit the 2H NMR data and predict the 13C NMR data in the MHz range. Orientational correlation functions have been calculated, which emphasizes the importance of NMR relaxation as a unique tool for investigating the dynamics of lipid bilayers and biological membranes. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 78 (1995), S. 1281-1290 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Pulsed laser ablation of aqueous medium irradiated under conditions of temporal confinement of thermal stress is described. Time-resolved measurements of laser-induced transient stress waves with simultaneous imaging of ablation process by laser-flash photography were performed. Stress transients induced in aqueous solution of K2CrO4 by ablative nanosecond laser pulses at 355 nm were studied by a broad-band lithium niobate acoustic transducer. Recoil momentum upon material ejection was measured from the temporal profiles of the acoustic transducer signal as a function of incident laser fluence. Cavitation bubbles produced in the irradiated volume during the tensile phase of thermoelastic stress were shown to drive material ejection at temperatures substantially below 100 °C. Experimental data are evident that nanosecond-pulse laser ablation of aqueous media (when temporal stress-confinement conditions are satisfied) include the following two main stages of material ejection: (1) ejection of water microdroplets due to expansion and rupture of subsurface cavitation bubbles; (2) ejection of liquid streams with substantial volume upon collapse of initial crater and large cavitation bubbles in the depth of irradiated volume (after coalescence of smaller bubbles). © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 111 (1999), S. 4442-4452 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Predictions of the diatomics-in-ionic-systems model for the variety of stationary points on the potential energy surfaces of the hydrogen fluoride clusters (HF)n (3≤n≤6) are compared to the results of ab initio MP2/6-311+G(2d,2p) calculations as well as to the results of the polarizable mechanics model of Hodges et al. [J. Phys. Chem. A 102, 2455 (1998)]. The diatomics-in-ionic-systems scheme which relies on the balanced treatment of neutral and ionic contributions to the electronic properties of polyatomic species within the diatomics-in-molecules theory takes into account here the mixing of the FH and F−H+ electronic states. The corresponding mixing coefficient serves as a single principal adjustable parameter of the model, finally selected by the reference value of the binding energy of (HF)3. It is shown that structures and energies of the main cyclic isomers are in a good agreement with the best estimates of Quack and Suhm [Conceptual Perspectives in Quantum Chemistry (Kluwer, Dordrecht, 1997)]. Every prediction of this model for the stationary points corresponding to 16 higher energy structures of (HF)n is confirmed by the MP2 ab initio data.© 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 109 (1998), S. 3096-3107 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Small semiconductor silver and gold sulfide clusters (Ag2S)n and (Au2S)n, n=1,2, are studied by valence ab initio calculations with the inclusion of electron correlation at the second-order perturbation theory (MP2) and coupled-cluster [CCSD and CCSD(T)] levels. Various relativistic and nonrelativistic pseudopotentials are employed to describe the effects of core electrons. Correlation and relativistic effects are essential in determining the geometry and relative stability of monomer and dimer structures. Relativistic effects result in a notable decrease in the calculated interatomic distances, which is especially significant in the case of gold sulfide structures (up to 10%). Correlation effects markedly increase the stability of compact structures with an increased number of relatively short M...M contacts (M...M distances of about 280–330 pm). Excluding the correlation of lower-lying valence orbitals (sulfur 3s and silver 4d or gold 5d) results in completely opposite predictions. This fact suggests that the effects of d–d and d–outer valence (metal ns and sulfur 3p) electron correlation give rise to attractive short-range interactions of intramolecular van der Waals type, which determine the increased stability of more compact cluster structures. However, large-core pseudopotentials strongly exaggerate this effect in the case of gold and give results rather different from those obtained with more valid and accurate small-core pseudopotentials. It is shown that the reason for this deficiency lies in the nature of pseudopotentials themselves rather than in basis-set shortcomings. The atomization and dissociation energies, equilibrium geometrical parameters, dipole moments, and Mulliken populations are calculated and discussed. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 109 (1998), S. 6390-6395 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Molecular dynamics simulation has been used to explore the nature of solvation dynamics for an excess electron in methanol and in water. We perform the analysis within the linear response theory and show that nonlinear corrections are small in both cases. The response function characterizing solvent relaxation after electron photoexcitation and that following the subsequent nonradiative transition are modeled and found to behave very similarly in methanol, in contrast to water. For methanol, each is comprised of an extremely short Gaussian inertial component of small amplitude and a bi-exponential diffusive decay. A relatively fast ∼1 ps exponential accounts for approximately half of the solvent relaxation and is followed by a slower ∼7 ps relaxation of comparable magnitude, a solvation response that is rather similar to that reported previously for relatively large molecules in methanol. Spectral densities of energy gap fluctuations for the equilibrium ground and excited state trajectories show that translational motion dominates solvation. Relaxational processes in methanol have been compared with the results for water. In contrast to methanol, librational motions of solvent molecules significantly influence aqueous solvation dynamics, especially following excited state decay. This difference is reflected in the relaxational processes, which are an order of magnitude slower in methanol than in water. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 110 (1999), S. 8802-8818 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Investigation of the deuterium (2H) nuclear magnetic resonance (NMR) relaxation rates of lipid bilayers containing cholesterol can yield new insights regarding its role in membrane function and dynamics. Spin-lattice (R1Z) and quadrupolar order (R1Q) 2H NMR relaxation rates were measured at 46.1 and 76.8 MHz for macroscopically oriented bilayers of 1,2-diperdeuteriomyristoyl-sn-glycero-3-phosphocholine (DMPC-d54) containing cholesterol (1/1 molar ratio) in the liquid-ordered phase at 40 °C. The data for various segmental positions along the DMPC-d54 acyl chain were simultaneously fitted to a composite membrane deformation model, including fast segmental motions which preaverage the coupling tensor along the lipid acyl chain, slow molecular reorientations, and small-amplitude collective fluctuations. In contrast to pure DMPC-d54 in the liquid-crystalline (Lα) phase, for the DMPC-d54:cholesterol (1/1) system a linear square-law functional dependence of the relaxation rates on the order parameter (quadrupolar splitting) does not appear evident. Moreover, for acyl segments closer to the top of the chain, the angular anisotropy of the 2H R1Z and R1Q relaxation rates is more pronounced than toward the chain terminus. The residual (preaveraged) coupling tensor has its greatest effective asymmetry parameter near the polar groups, decreasing for the groups closest to the end of the chain. The results suggest that axial rotations of the phospholipid molecules occur at a somewhat higher rate than in pure bilayers, as a consequence of the higher ordering and reduction of chain entanglement. On the other hand, the rigid cholesterol molecule appears to undergo somewhat slower axial rotation, possibly due to its noncylindrical shape. Collective motions are found to be less predominant in the case of DMPC-d54:cholesterol than for pure DMPC-d54, which may indicate an increased dynamical rigidity of lipid bilayers containing cholesterol versus pure lipid systems. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 104 (1996), S. 3189-3197 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The near infrared high-resolution spectra of the a-type transitions of the weak 3v1+2v2 combination band of transient HO35(37)Cl at 12 600 cm−1 has been recorded in an ultrasensitive titanium:sapphire intracavity laser absorption spectrometer (ICLAS). We report line assignments, new and refined anharmonicity parameters, and the spectroscopic constants for the excited rovibrational states of 3v1+2v2. The Fermi resonance perturbations in this five quanta region, where the internal energy of the molecule is already more than 2/3 of the dissociation energy E0, remain localized and they are the exception, while the extent of intermode mixing and thus intramolecular vibrational energy distribution (IVR) seems to be still small. A Dunham expansion is used for band origin predictions and representations of vibrational states N(E) of HO35Cl up to the dissociation threshold. The results are compared with harmonic and anharmonic numbers of states from a recently proposed stretch–bend coupling model. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A tandem mass spectrometer consisting of a double-focusing magnetic-sector mass analyzer in series with a time-of-flight (TOF) mass analyzer has been designed and constructed. The TOF analyzer was a quadratic-field ion mirror. The method of ionization used was matrix-assisted laser desorption/ionization. Precursor ions were mass selected with the magnetic-sector analyzer, and time focused by ion bunching prior to fragmentation in a collision cell. The fragment ions were mass analyzed with the TOF analyzer, which possessed the property that residence times (i.e., times of flight) in the mirror were independent of ion velocity. The theoretical background to the instrumental design is presented. Experimental results are presented, showing resolutions of 4000 in fragment ion spectra and demonstrating effective high-energy collision-induced decomposition of peptide molecule ions. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 67 (1995), S. 197-199 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The dynamics of laser-ablated yttrium plume propagation through background argon have been investigated with fast time- and spatially-resolved plasma diagnostics in order to characterize a general phenomenon believed to be important to film growth by pulsed laser deposition (PLD). During expansion into low-pressure background gases, the ion flux in the laser ablation plasma plume is observed to split into fast and slow components over a limited range of distances including those typically utilized for PLD. Optical absorption and emission spectroscopy are employed to simultaneously identify populations of both excited and ground states of Y and Y+. These are correlated with intensified-CCD (ICCD) photographs of visible plume luminescence and ion fluxes recorded with fast ion probes. These measurements indicate that plume-splitting in background gases is consistent with scattering of target constituents by ambient gas atoms. The momentum transfer from these collisions produces a transition from the initial, "vacuum'' velocity distribution into a velocity distribution which is significantly slowed in accordance with shock or drag propagation models. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    Journal of Mathematical Physics 37 (1996), S. 233-239 
    ISSN: 1089-7658
    Source: AIP Digital Archive
    Topics: Mathematics , Physics
    Notes: A new solution of the inhomogeneous d'Alembert equation with the point uniformly moving charge is found. The comparison of the new solution with the Kirchhoff formula solution is performed. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...