feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Electronic Resource
    Electronic Resource
    Molecular and cellular biochemistry 200 (1999), S. 69-76 
    ISSN: 1573-4919
    Keywords: CRABP-I ; RA induction ; RA binding ; mutagenesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract We have mutated the type I cellular retinoic acid binding protein (CRABP-I), individually at the Arg131 (into Ala) and the Tyr 133 (into Phe) residues which have been predicted to make direct contact with retinoic acid (RA) based upon previous structural studies. The RA-binding affinities of these mutants are examined and their biological effects on RA induction of reporter genes are determined. The R131A mutation drastically affects its ligand-binding property, but the Y133F mutation has little effect. By using an RA-inducible reporter, it is found that the wild type CRABP-I exerts biphasic effects on RA induction of the reporter. The early (at 12 h) effect is to enhance RA induction, whereas the delayed (at 24 h) effect is to suppress RA induction. In consistence with their RA binding property, the R 131A mutant loses both its early and delayed biological activities, whereas the Y133F mutant remains as effective as the wild type. It is concluded that CRABP-I over-expression exerts biphasic effects on RA-mediated gene expression, and that Arg131, but not Tyr 133, is essential for a high RA-binding affinity of this protein as well as its biological activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1058-8388
    Keywords: CRABP-I ; P19 cells ; DNA methylation ; Gene expression ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The mouse cellular retinoic acid binding protein-I (CRABP-I) gene is specifically up-regulated by retinoic acid (RA) in P19 mouse embryonal carcinoma cells, and its expression in animals is spatially and temporally restricted to RA-sensitive tissues during embryonic development. This study demonstrates that, in adult mouse tissues and P19 cells where the expression of CRABP-I is detected at the basal level, the 5′- flanking region of the CRABP-I gene is hypermethylated at the C residues of all the Hpa II sites. Conversely, in mouse embryos during early stages of development when the expression of CRABP-I gene is detected at a much higher level, this region is demethylated at these Hpa II sites. In P19, enhancement on the RA-induced up-regulation of CRABP-I can be observed in cells treated with 5-azacytidine (5-AzaC) in conjunction with RA, where partial demethylation in the 5′-flanking region of CRABP-I gene is observed. Nuclear run-on experiments indicate that increased message levels of CRABP-I in P19 cells can be accounted for, at least partially, by increases in its transcription rates. The induction of retinoic acid receptor (RAR) β by RA can also be enhanced by 5-AzaC, but to a much lesser degree. In contrast, all the Hpa II sites in the structural gene portion, at least in the first two exons, are fully demethylated at the C residues. © 1994 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...