feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Electronic Resource
    Electronic Resource
    Mathematical methods of operations research 47 (1998), S. 1-37 
    ISSN: 1432-5217
    Keywords: Integer programming ; test set ; Graver test set ; Hilbert basis ; neighbors of the origin ; Gröbner basis ; augmentation problem ; knapsack problem
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics , Economics
    Notes: Abstract This article is a survey about recent developments in the area of test sets of families of linear integer programs. Test sets are finite subsets of the integer lattice that allow to improve any given feasible non-optimal point of an integer program by one element in the set. There are various possible ways of defining test sets depending on the view that one takes: theGraver test set is naturally derived from a study of the integral vectors in cones; theScarf test set (neighbors of the origin) is strongly connected to the study of lattice point free convex bodies; the so-calledreduced Gröbner basis of an integer program is obtained from a study of generators of polynomial ideals. This explains why the study of test sets connects various branches of mathematics. We introduce in this paper these three kinds of test sets and discuss relations between them. We also illustrate on various examples such as the minimum cost flow problem, the knapsack problem and the matroid optimization problem how these test sets may be interpreted combinatorially. From the viewpoint of integer programming a major interest in test sets is their relation to the augmentation problem. This is discussed here in detail. In particular, we derive a complexity result of the augmentation problem, we discuss an algorithm for solving the augmentation problem by computing the Graver test set and show that, in the special case of an integer knapsack problem with 3 coefficients, the augmentation problem can be solved in polynomial time.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...