Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-3904
    Keywords: α-Helix ; Carboxamide substitution ; Circular dichroism ; Disulfide isomer ; KR-ET-1 ; Prosequence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary An amino-terminal extension of endothelin-l by the lys-Arg dipeptide in the prosequence (KR-ET-1) greatly increased the ratio of native-type to non-native-type disulfide isomer (96/4 versus 71/29) during the oxidative folding reaction. This improvement was completely abolished by substituting Asn for Asp at position 8 (D8N-KR-ET-1), whereas most of it was maintained with similar carboxamide analogues replaced at Glu10 or Asp18. Structure analyses by circular dichroism spectroscopy revealed that (i) in the carboxylate state, the α-helical content of the native-type isomer of KR-ET-l is higher than that of the native-type isomer of ET-1, while such a variation is not observed in the corresponding non-native-type isomer of KR-ET-l; and (ii) the enhanced α-helicity resulting from the Lys-Arg extension is largely diminished in D8N-KR-ET-l. From these results and our previous findings that the helical structure in KR-ET-l is stabilized by a particular salt bridge between the extended Arg−1 basic moiety and either the Asp8 or Glu10 acidic side chain in Et-1 [Aumelas, A. et al., Biochemistry, 34 (1995) 4546], we conclude that the formation of a specific salt bridge between the side chains of Arg−1 and Asp8 in KR-ET-1 is critical for the predominant generation of the native-type disulfide isomer, probably because it stabilizes the helical structure of parental ET-1.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-3904
    Keywords: α-Helix ; Carboxamide substitution ; Circular dichroism ; Disulfide isomer ; KR-ET-1 ; Prosequence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract An amino-terminal extension of endothelin-1 by the Lys-Arg dipeptide in the prosequence (KR-ET-1) greatly increased the ratio of native-type to non-native-type disulfide isomer (96/4 versus 71/29) during the oxidative folding reaction. This improvement was completely abolished by substituting Asn for Asp at position 8 (D8N-KR-ET-1), whereas most of it was maintained with similar carboxamide analogues replaced at Glu10 or Asp18. Structure analyses by circular dichroism spectroscopy revealed that (i) in the carboxylate state, the α-helical content of the native-type isomer of KR-ET-1 is higher than that of the native-type isomer of ET-1, while such a variation is not observed in the corresponding non-native-type isomer of KR-ET-1; and (ii) the enhanced α-helicity resulting from the Lys-Arg extension is largely diminished in D8N-KR-ET-1. From these results and our previous findings that the helical structure in KR-ET-1 is stabilized by a particular salt bridge between the extended Arg-1 basic moiety and either the Asp8 or Glu10 acidic side chain in ET-1 [Aumelas, A. et al., Biochemistry, 34 (1995) 4546], we conclude that the formation of a specific salt bridge between the side chains of Arg-1 and Asp8 in KR-ET-1 is critical for the predominant generation of the native-type disulfide isomer, probably because it stabilizes the helical structure of parental ET-1.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...