Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 05 B 35  (1)
  • Industrial Chemistry and Chemical Engineering  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Combinatorica 8 (1988), S. 217-234 
    ISSN: 1439-6912
    Keywords: 05 B 35 ; 05 c 20 ; 68 Q 20
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract LetG be a 2-connected rooted graph of rankr andA, B two (rooted) spanning trees ofG We show that the maximum number of exchanges of leaves that can be required to transformA intoB isr 2−r+1 (r〉0). This answers a question by L. Lovász. There is a natural reformulation of this problem in the theory ofgreedoids, which asks for the maximum diameter of the basis graph of a 2-connected branching greedcid of rankr. Greedoids are finite accessible set systems satisfying the matroid exchange axiom. Their theory provides both language and conceptual framework for the proof. However, it is shown that for general 2-connected greedoids (not necessarily constructed from branchings in rooted graphs) the maximum diameter is 2r−1.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Applied Organometallic Chemistry 11 (1997), S. 181-194 
    ISSN: 0268-2605
    Keywords: synthesis ; silazanes ; polymer pyrolysis ; non-oxide ceramics ; Si3N4 ; SiC ; crystallization ; ceramic matrix composites ; Chemistry ; Industrial Chemistry and Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The goal of this investigation was to optimize the synthesis of silazane-based polymers for processing fibre-reinforced ceramic matrix composites (CMCs). Liquid oligomeric silazanes were synthesized by ammonolysis of chlorosilanes and characterized spectroscopi- cally (FTIR, NMR) as well as by elemental analysis. The silazanes were obtained in high yield and purity. Different functional groups (system S1: Si - H, Si - CH3, Si - CH=CH2) and different degrees of branching in the Si - N backbone [system S2; Si(NH)3, Si(NH)2] were realized in order to study the properties of the silazanes that are dependent on the molecular structure.For processing ceramics via pyrolysis of pre-ceramic oligomers, molecular weight, rheological behaviour, thermosetting and ceramic yield were investigated systematically and correlated with the molecular structure of the silazanes. Low molecular weights (500-1000 g mol-1) as well as low viscosity values (0.1-20 Pa s) enable processing of the silazanes in the liquid phase without any solvent. Due to the latent reactivity of the functional groups, curing of the polymers via hydrosilylation is achieved.Structural changes and weight loss during polymer curing as well as the organic/inorganic transition were monitored by FTIR spectroscopy and differential thermogravimetric analysis. With increasing temperature (room temperature to 800 °C) the hydrogen content decreases from 7 to 〈 0.5 wt% due to the formation of gaseous molecules (NH3, CH4, H2). High ceramic yields up to 80% were reached by branching the oligomers, thus reducing the amount of volatile precursor fragments.Up to 1300 °C, ceramic materials remained amorphous to X-rays. At higher temperatures (1400-1800 °C) either SiC or SiC/Si3N4 composites were selectively crystallized, depending on the pyrolysis conditions. The utility of the optimized precursors for CMCs has been demonstrated by infiltration of fibre preforms and subsequent pyrolysis. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...