Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Computing 54 (1995), S. 191-211 
    ISSN: 1436-5057
    Schlagwort(e): 90C27 ; 90C35 ; 15A57 ; 05C45 ; Traveling salesman problem ; subtour patching ; Monge matrix
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Informatik
    Beschreibung / Inhaltsverzeichnis: Zusammenfassung Es sieA=(a ij ) die Entfernungsmatrix eines (asymmetrischen) Rundreiseproblems und τ=τ1τ2...τ m die Optimallösung des zugehörigen Zuordnungsproblems mit den Teilzyklen τ=τ1τ2...τ m . Wählt man (m−1) Transpositionen (k, l) mitk ∈ τ i−1,l ∈ τ i (i=2, ...,m) und verknüpft man die Teilzyklen unter Zuhilfenahme dieser Transpositionen in beliebiger Ordnung, so erhält man eine Menge zyklischer Permutationen. Es wird gezeigt, daß man die kürzeste Tour in dieser Menge von Rundreisen mit einem Rechenaufwand von O(n 2|τ|* Operationen bestimmen kann, wobei |τ|* die maximale Anzahl von Städten in einem Teilzyklus von τ ist. Im Falle, daß die EntfernungsmatrixA=(a ij ) eine permutierte Verteilungsmatrix (Monge-Matrix) und der VerknüpfungsgraphG τ ein mehrfacher Weg ist, kann ein Resultat von Gaikov verbessert werden. In Verbindung mit einem Resultat von Park führt die oben entwickelte Theorie in diesem Fall zu einemlinearen Verfahren zur Bestimmung einer optimalen Rundreise.
    Notizen: Abstract LetA=(a ij ) be the distance matrix of an arbitrary (asymmetric) traveling salesman problem and let τ=τ1τ2...τ m be the optimal solution of the corresponding assignment problem with the subtours τ=τ1τ2...τ m . By choosing (m−1) transpositions (k, l) withk ∈ τ i−1,l ∈ τ i (i=2, ...,m) and patching the subtours by using these transpositions in any order, we get a set of cyclic permutations. It will be shown that within this set of cyclic permutations a tour with minimum distance can be found by O(n 2|τ|* operations, where |τ|* is the maximum number of nodes in a subtour of τ. Moreover, applying this result to the case whenA=(a ij ) is a permuted distribution matrix (Monge-matrix) and thepatching graph G τ is a multipath, a result of Gaikov can be improved: By combining the above theory with a result of Park alinear algorithm for finding an optimal TSP solution can be derived, provided τ is already known.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Computing 45 (1990), S. 51-68 
    ISSN: 1436-5057
    Schlagwort(e): 68U05 ; 90C25 ; Shortest polygonal paths ; shortest inpolygons ; funnel ; linear time algorithm ; constrained paths ; convex function
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Informatik
    Beschreibung / Inhaltsverzeichnis: Zusammenfassung Ein klassisches Problem der Geometrie fragt nach einem einbeschriebenen Polygon kürzesten Umfanges eines gegebenen konvexen Polygons. Wir verallgemeinern dieses Problem auf beliebige Polygonzüge im Raum und untersuchen zwei Fälle: im “offenen” Fall kann der gesuchte Streckenzug kürzester Länge einen unterschiedlichen Anfangs- und Endpunkt haben, während im “geschlossenen” Fall diese beiden Punkte zusammenfallen müssen. Es wird gezeigt, daß solche kürzesten Polygonzüge durch kürzeste Streckenzüge in einem ebenen “Kanal” bestimmt werden, die in beiden Fällen durch einen Algorithmus mit linearer Laufzeit bestimmt werden können. Ferner wird der Fall behandelt, daß der gesuchte Polygonzug ohne Knick durch einen vorgegebenen Punkt gehen soll. Es wird gezeigt, daß die Länge des Polygonzuges dann eine streng konvexe Funktion eines bestimmten Winkels ist, wodurch es möglich wird, auch dieses Problem effizient zu lösen.
    Notizen: Abstract A classical problem of geometry is the following: given a convex polygon in the plane, find an inscribed polygon of shortest circumference. In this paper we generalize this problem to arbitrary polygonal paths in space and consider two cases: in the “open” case the wanted path of shortest length can have different start and end point, whereas in the “closed” case these two points must coincide. We show that finding such shortest paths can be reduced to finding a shortest path in a planar “channel”. The latter problem can be solved by an algorithm of linear-time complexity in the open as well in the closed case. Finally, we deal with constrained problems where the wanted path has to fulfill additional properties; in particular, if it has to pass straight through a further point, we show that the length of such a constrained polygonal path is a strictly convex function of some angle α, and we derive an algorithm for determining such constrained polygonal paths efficiently.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...