Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Oxalate ; Succinate ; Glutarate ; 2-Oxoglutarate ; Citrate ; Sulfate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In order to study the specificity for contraluminal para-aminohippurate (PAH) transport, the inhibitory potency of aliphatic dicarboxylates on3H-PAH influx, as well as the inhibitory effect on35SO 4 2− - and3H-succinate influx, from the interstitium into cortical tubular cells in situ has been determined. The following was found: 1. Testing a homologous series of dicarboxylates-ranging from the 2 C oxalate to the 10 C sebacate — PAH transport was inhibited by succinate (app.K i 1.35 mmol/l), and all longer dicarboxylates, with high potency (app.K i 0.05–0.35 mmol/l). Sulfate transport was inhibited only by oxalate (app.K i 1.1 mmol/l), while dicarboxylate transport was inhibited by succinate, glutarate, adipate and pimelate with decreasing potency (app.K i 0.04, 0.24, 0.91, 4.0 mmol/l, respectively). 2. PAH transport was inhibited by succinate and glutarate with high potency (app.K i 1.35 and 0.05 mmol/l), by the correspondent monomethylester to a lesser extent (app.K i 1.7 and 0.74 mmol/l), but not by the dimethylester. On the other hand, the semialdehyde of succinate with aK i-value of 1.2 mmol/l, had the same inhibitory potency as succinate itself, while the dialdehyde of glutarate (app.K i 1.4 mmol/l) was much less potent as glutarate. 3. Introduction of an oxo-, methyl- or sulfhydroxylgroup onto the 2-position of succinate, or of an oxo-group onto the 2-position of glutarate moderately augmented the inhibitory potency against PAH-uptake. However, introduction of a 2-hydroxy group onto succinate or glutarate in thel-position reduced the inhibitory potency more than in thed-position. Introduction of two methyl-, sulfhydryl- or hydroxyl-groups in the 2–3-position of succinate reduced or abolished its inhibitory potency. The introduction of a 2-amino group onto succinate or glutarate abolished its effect on PAH transport. However, N-acetylation or N-benzoylation led to a restitution in inhibitory potency. 4. The trans-isomers fumarate and mesaconate inhibited PAH- and methylsuccinate transport, while the cis-isomers maleate and citraconate did so to a lesser extent or not at all. The effect was reversed with the tricarboxylic aconitates, because cis-aconitate bears a CH2-extended COOH-group in trans-position and trans-aconitate in cis-position. The data indicate that there exist three different anion transport systems at the contraluminal cell side of the proximal renal tubule: 1. a sulfate-oxalate transporter, 2. a sodium-dependent dicarboxylate transporter, and 3. a paraaminohippurate transporter. The PAH transport system accepts dicarboxylates with chain length higher than 7.5 Å (=distance between the terminal oxygen atoms), while the dicarboxylate transport interacts with dicarboxylates with a chain length between 6.5 and 10 Å. Both transport systems prefer the transconfiguration. The effect of side groups on the interaction of dicarboxylates with the PAH-transport system is due mainly to hydrophobicity and electron configuration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: 2-Oxoglutarate ; Lactate ; Pyruvate ; Nitrate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In order to study the characteristics of contraluminal para-aminohippurate transport into proximal tubular cells the stopped flow capillary perfusion method was applied. The disappearance of3H-paraaminohippurate from the capillary perfusate at different concentrations and contact times was measured and saturation type behaviour was found with aK m of 0.08±0.01 (SE) mmol/l,J max of 1.1±0.1 pmol·s−1·cm−1 andr, the final extracellular/intracellular distribution ratio of 0.93±0.03. Omission of Na+ from the capillary test perfusate caused a small reduction of contraluminal PAH uptake at small transport rates (0.1 mmol/l PAH in the test perfusate) but not at high transport rates (1.0 mmol/l PAH in the test perfusate). Change of K+ between 0 and 40 mmol/l and pH between 6.0 and 8.0 did not influence contraluminal PAH uptake. Isotonic replacement of chloride by gluconate, nitrate, sulfate, phosphate, methanesulfonate or increase in bicarbonate to 50 mmol/l did not influence PAH uptake at small transport rates. But isotonic sulfate and phosphate, as well as 50 mmol/l HCO 3 − and 25 mmol/l Hepes in isotonic solutions reduced PAH uptake at high transport rates. Addition of 5 mmol/l Ca2+, Mg2+, Mn2+, Ba2+, Cd2+ to isotonic Na+-gluconate solution did not influence PAH uptake except for Mg2+ and Mn2+ which inhibited uptake at small transport rates only. Preperfusion of the peritubular capillaries with rat serum, Na+ gluconate (Ca2+-+Mg2+-free), Na+ gluconate (Ca2+-+Mg2+-free) plus 10 mmol/l lactate or pyruvate or 0.1 mmol/l 2-oxoglutarate did not influence PAH uptake at small PAH transport rates, but inhibited at high transport rates. Preperfusion of the capillaries for 10 s with Na+-, Ca2+- and Mg2+-free solutions reduced PAH uptake in the presence of Na+ at both transport rates. A second 10 s preperfusion — after the first 10 s Na+-, Ca2+-, Mg2+-free preperfusion — with serum or solutions which contained Na+ and Ca2+ or Mg2+ restored the PAH fluxes to control values. The data are compatible with the hypothesis that contraluminal PAH uptake occurs by a saturable transport mechanism in exchange for other intracellular anions rather than in cotransport with Na+ ions. It was, however, not possible to identify the type of counteranions involved. The large effect of cation replacement on para-aminohippurate transport, which was reported in many previous studies with kidney slices, is not a direct effect on the para-aminohippurate transporter, but is rather caused indirectly via cell metabolism and/or changed ion gradients.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...