Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Basolateral cell membrane ; Methylsuccinate-transport ; 2-Oxolutarate-transport ; Citrate-transport ; Lithium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The transport of dicarboxylic acids in the proximal convolution was investigated by measuring: a) the zero net flux transtubular concentration difference ofdl-methyl-succinate, b) its 2-s influx from the interstitium into tubular cells, and c) its 3.5-s efflux from the tubular lumen. With the first method a luminal concentration exceeding the peritubular concentration was observed, thus indicating a net active transtubular secretion of this slowly metabolized substance. All transport steps, luminal and contraluminal, as well as the overall transport, were Na+-dependent and inhibited by lithium (apparentK i ≈ 1.8 mmol/l). The overall transport of methylsuccinate, as well as the contraluminal influx into proximal tubular cells, could be inhibited by paraaminohippurate and H2-DIDS with an apparentK i of ≈ 1.8 mmol/l, by taurocholate with an apparentK i ≈ 3.` mmol/l and by pyruvate with an apparentK i ≈ 5 mmol/l, but not by sulfate, thiosulfate,l-lactate, oxalate and urate. As judged from the inhibition of contraluminal methylsuccinate influx by 48 dicarboxylic acids (aliphatic and aromatic), a specificity pattern was observed similar to that of inhibition of luminal efflux of 2-oxoglutarate [22]: a preference of dicarboxylates in the transconfiguration with a chain length of 4–5 carbons; little change in the inhibitory potency with CH3 −, OH−, SH−and O=, but strong reduction with a NH 3 + in the 2 position; only a small reduction of inhibitory potency with 2,3 disubstituted SH and OH analogs; preference of the dicarboxylic benzene in the 1,4 position and of the diacetyl benzene in the 1,2 position. The data indicate a Na+-dependent dicarboxylic transport system at the contraluminal cell side of the proximal tubule which is very similar to the luminal transport system for dicarboxylic acids.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...