Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 25.70.Cd  (2)
  • PACS:25.60.Je Transfer reactions – 21.60.Jz Hartree-Fock and random-phase approximations – 21.10.Gv Mass and neutron distributions  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 2 (1998), S. 41-53 
    ISSN: 1434-601X
    Keywords: PACS:25.60.Je Transfer reactions – 21.60.Jz Hartree-Fock and random-phase approximations – 21.10.Gv Mass and neutron distributions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract: Low energy single nucleon transfer reactions are proposed as a tool to investigate the structure of nuclei far off stability. Experimental concepts and conditions are discussed, in particular high resolution γ-ray spectroscopy after single nucleon pickup reactions. Nuclear structure is described by Skyrme Hartree-Fock calculations including pairing. As representative examples, binding energies, radii and wave functions for Mg and Sn isotopes are calculated. In the neutron deficient Mg isotopes a proton skin is found. At the neutron driplines the Mg and Sn isotopes develop extended neutron skins. The nuclear structure results are used in DWBA and EFR-DWBA transfer calculations. Single nucleon transfer reactions of 32,36Mg and exotic Sn beams on targets ranging from 2H to 24Mg in inverse kinematics are explored. The one-nucleon transfer cross sections decrease strongly for high-Z targets. An impact parameter analysis shows that the transfer process is selective on the tails of the wave functions. The largest cross sections are obtained for 2H and 9Be targets at incident energies of E lab = 2-5 MeV/u. The energy-momentum dependence is closely related to the special properties of wave functions of weakly bound states. Two-neutron (p,t) stripping reactions are studied for a 6He projectile. A strong competition of sequential and direct processes is found at low energies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1434-601X
    Keywords: 21.10.Dr ; 25.70.Cd ; 27.20.+ n
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The mass of10Li has been measured with two different reactions:9Be(13C,12N)10Li,E Lab=336 MeV, and13C(14C,17F)10Li,E Lab=337 MeV. The mass excess of 33.445(50) MeV is deduced from theQ-value measurement.10Li is found to be particle-unstable with respect to one-neutron emission by 0.42(5) MeV. In the analysis of the first reaction a low lying excited state is found at 0.38(8) MeV. This state and the ground state can be most probably identified as the 1+/2+-doublet coupled from the [π 1p3/2 ⊗ν 1p 1/2] configuration, the 1+-state being the ground state. The (13C,12N)-reaction populates the 1+-state strongly due to a spin-isospin-flip character of the dominant part of the transition amplitude. The 2+-member corresponds to the mass given by Wilcox et al. A second excited state is observed at 4.05(10) MeV with a width of 0.7(2) MeV, it can be associated with theν 1d 5/2-strength. The second reaction is fully supporting the interpretation of the ground state doublet. The excited state at 4.05 MeV is not observed in this reaction and indeed it should not, because the reaction does not populate in first order excited neutron configurations. The levels are well described by mean field calculations including pairing correlations. The lowest resonance in the calculations is theν 1/2−-configuration, whereas theν 1/2+-configuration shows at the neutron threshold a strong non-resonant contribution.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1434-601X
    Keywords: 21.10.Dr ; 25.70.Cd ; 27.20.+n
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The mass of 13 Be has been measured with the reaction 13 C(14 C,14 O)13 Be at E Lab =337 MeV. A Q-value of Q 0=−37.02(5) MeV was obtained and the mass excess is M.E.=35.16(5) MeV. If the observed line corresponds to the ground state,13 Be is particle unstable with respect to the oneneutron emission by 2.01 MeV. The observed line width of 0.3(2) MeV supports an assignment ofJ π=5/2+ or 1/2−, but excludesJ π=1/2+. An excited state is seen at 3.12(7) MeV; there are indications of a second excited state at 6.5(2) MeV.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...