Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1435-1463
    Keywords: 3,4 Methylenedioxymethamphetamine ; degeneration ; ecstasy ; MDMA ; neurotoxicity ; serotonin ; substituted amphetamines
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The massive and prolonged stimulation of serotonin (5-HT)-release and the increased dopaminergic activity are responsible for the acute psychomimetic and psychostimulatory effects of 3,4-methylenedioxy-methamphetamine (MDMA, “ecstasy”) and its congeners. In vulnerable subjects, at high doses or repeated use, and under certain unfavorable conditions (crowding, high ambient temperature), severe, in some cases fatal, averse systemic reactions (hyperthermia, serotonin-syndrome) may occur during the first few hours. Animal experiments revealed the existence of similar differences in vulnerability and similar dose- and context-related influences on a similar sequence of acute responses. The severity of these acute systemic responses is closely related to the severity of the long-term damage to 5-HT axon terminals caused by the administration of substituted amphetamines. Attempts to identify the mechanisms involved in this selective degeneration of 5-HT presynapses brought to light a multitude of different factors and conditions which either attenuate or potentiate the loss of 5-HT terminals caused by MDMA and related amphetamine derivatives. These puzzling observations suggest that the degeneration of 5-HT presynapses represents only the final step in a sequence of events which compromize the ability of 5-HT terminals to maintain their functional and structural integrity. The common feature of all these events is a profound wastage of energy. Substituted amphetamines selectively tax energy metabolism in 5-HT presynapses through their ability to exchange with 5-HT and to dissipate transmembrane ion gradients. The active carrier systems in the vesicular and presynaptic membrane operate at a permanently activated state. The resulting energy deficit can no longer adequately restored by the 5-HT presynapses when their availability of substrates for ATP production is additionally reduced by the hyperthermic and other energy consuming reactions which are elicited by the systemic administration of substituted amphetamines. The exhaustion of energy in 5-HT nerve terminals compromizes all energy-requiring endogenous mechanisms involved in the regulation of transmembrane-ion exchange, internal Ca++-homeostasis, prevention of oxidative stress, detoxification, and repair. Above a critical threshold the failure of these self-protective mechanisms will lead to the degeneration of the 5-HT axon terminals. Based on the role of 5-HT as a global modulatory transmitter-system involved in the stabilization and integration of impulse flow between distributed multifocal neuronal networks, the partial loss of 5-HT presynapses must be expected to impair the ability of these networks to maintain the integrity of signal flow pattern, and increase the likelihood of switching to unstable information processing. Behavioral responding may therefore become more dominated by activities generated in individual networks, and hitherto “buffered” personality traits and predisposition may become manifested as defined psychiatric syndromes in certain predisposed subjects.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...