Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of biomolecular NMR 4 (1994), S. 17-34 
    ISSN: 1573-5001
    Keywords: 3′-Thioformacetal-linked oligonucleotide ; NMR solution structure ; Local conformation at ODN modification site ; O4′-endo sugar conformation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary The DNA·DNA duplex $${\text{d}}\left( {{\text{CGCGTT}}_{{\text{SCH}}_{\text{2}} {\text{O}}} {\text{TTGCGC}}} \right)$$ ·d(GCGCAAAACGCG) (designated duplex III) containing a 3′-thioformacetal (3′-TFMA) linkage in the center of the sequence was characterized in detail by two- and three-dimensional homonuclear NMR spectroscopy. The NMR results were analyzed and compared with those of two duplexes of the same sequence: One is an unmodified reference sequence and the other contains a formacetal (OCH2O) linkage at the central T^T step (designated duplex I and duplex II, respectively). In general, the NMR spectra of duplex III closely resemble those of the analogous duplexes I and II, suggesting an overall B-type structure adopted by the 3′-TFMA-modified duplex III. Nonetheless, the detection of several distinct spectral features originating from the protons at the $${\text{T6}}_{{\text{3' - SCH}}_{\text{2}} {\text{O}}} {\text{T7}}$$ modification site is indicative of a local conformation that is clearly different from the corresponding region in duplexes I and II. The 3′-thioformacetal linker, in contrast to the formacetal (FMA) linkage, cannot be accommodated in a conformation usually found in natural nucleic acid duplexes. As a consequence, the 3′-TFMA-modified T6 sugar adopts an O4′-endo form (an intermediate structure between the usual C2′-endo and C3′-endo forms). This change is accompanied by a change in the ε (C4′−C3′−S3′−CH2) dihedral angle and by subsequent adjustments of other torsion angles along the backbone. Notably, this conformational readjustment at the T6–T7 backbone linkage is localized; its collective result has negligible effect on base-base stacking of the T6 and T7 residues. A close examination of the COSY data in all three duplexes reveals a subtle variation in sugar geometry, with more S-type character adopted by the modified duplexes II and III. The results of this study illustrate that, although the difference between FMA and 3′-TFMA linkages is merely in the substitution of the T6(O3′) in the former by a sulfur atom in the latter, the stereoelectronic difference in a single atom can induce significant local structural distortion in an otherwise well-structured oligonucleotide duplex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...