Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 3-D deprmetion  (1)
  • 3-D forward modelling  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archive of applied mechanics 65 (1995), S. 365-373 
    ISSN: 1432-0681
    Keywords: Key words Hot rolling ; edge lamination ; 3-D deprmetion ; rigid plasticity ; FEM
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Summary  The rigid-plastic finite element method is applied to the analysis of the three-dimensional deformation behaviour, in particular the forming of edge lamination during the multi-pass hot roughing process of aluminium. The calculation is carried out for various rolling conditions and reduction schedules, and their influence on the edge lamination is examined. The results suggest that the crop loss due to the edge lamination can be reduced by increasing the roll diameter, the reduction per pass and the initial width of the slab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Marine geophysical researches 21 (2000), S. 1-21 
    ISSN: 1573-0581
    Keywords: Electromagnetic induction ; ocean bottom magnetometer ; 85° E ridge ; Ninety East ridge ; geomagnetic depth sounding ; vertical gradient sounding ; thin-sheet modelling ; 3-D forward modelling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Seafloor magnetometer array experiments were conducted in the Bay of Bengal to delineate the subsurface conductivity structure in the close vicinity of the 85° E Ridge and Ninety East Ridge (NER), and also to study the upper mantle conductivity structure of the Bay of Bengal. The seafloor experiments were conducted in three phases. Array 1991 consisted of five seafloor stations across the 85° E Ridge along 14° N latitude with a land reference station at Selam (SLM). Array 1992 also consisted of five seafloor stations across 85° E Ridge along 12° N latitude. Here we used the data from Annamalainagar Magnetic Obervatory (ANN) as land reference data. Array 1995 consisted of four seafloor stations across the NER along 9° N latitude with land reference station at Tirunelveli (TIR). OBM-S4 magnetometers were used for seafloor measurements. The geomagnetic Depth Sounding (GDS) method was used to investigate the subsurface lateral conductivity contrasts. The vertical gradient sounding (VGS) method was used to deliniate the depth-resistivity structure of the oceanic crust and upper mantle. 1-D inversion of the VGS responses were conducted and obtained a 3-layer depth-resistivity model. The top layer has a resistivity of 150–500 Ωm and a thickness of about 15–50 km. The second layer is highly resistive (2000–9000 Ωm) followed by a very low resistive (0.1–50 Ωm) layer at a depth of about 250–450 km. The 3-component magnetic field variations and the observed induction arrows indicated that the electromagnetic induction process in the Bay of Bengal is complex. We made an attempt to solve this problem numerically and followed two approaches, namely (1) thin-sheet modelling and (2) 3-D forward modelling. These model calculations jointly show that the observed induction arrows could be explained in terms of shallow subsurface features such as deep-sea fans of Bay of Bengal, the resistive 85° E Ridge and the sea water column above the seafloor stations. VGS and 3-D forward model responses agree fairly well and provided depth-resistivity profile as a resistive oceanic crust and upper mantle underlained by a very low resistive zone at a depth of about 250–400 km. This depth-range to the low resistive zone coincide with the seismic low velocity zone of the northeastern Indian Ocean derived from the seismic tomography. Thus we propose an electrical conductivity structure for the oceanic crust and upper mantle of the Bay of Bengal.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...