Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 16 (1993), S. 278-292 
    ISSN: 0887-3585
    Keywords: protein structural comparison ; 3-D protein motifs ; surface motifs ; docking ; computer vision ; geometric hashing ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We describe the application of a method geared toward structural and surface comparison of proteins. The method is based on the Geometric Hashing Paradigm adapted from Computer Vision. It allows for comparison of any two sets of 3-D coordinates, such as protein backbones, protein core or protein surface motifs, and small molecules such as drugs. Here we apply our method to 4 types of comparisons between pairs of molecules: (1) comparison of the backbones of two protein domains; (2) search for a predefined 3-D Cα motif within the full backbone of a domain; and in particular, (3) comparison of the surfaces of two receptor proteins; and (4) comparison of the surface of a receptor to the surface of a ligand. These aspects complement each other and can contribute toward a better understandingof protein structure and biomolecular recognition. Searches for 3-D surface motifs can be carried out on either receptors or on ligands. The latter may result in the detection of pharmacophoric patterns. If the surfaces of the binding sites of either the receptors or of the ligands are relatively similar, surface superpositioning may aid significantly in the docking problem. Currently, only distance invariants are used in the matching, although additional geometric surface invariants are considered. The speed of our Geometric Hashing algorithm is encouraging, with a typical surface comparison taking only seconds or minutes of CPU time on a SUN 4 SPARC workstation. The direct application of this method to the docking problem is also discussed. We demonstrate the success of this methodin its application to two members of the globin family and to two dehydrogenases. © 1993 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...