Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2234
    Keywords: Key words: Spin-coupled approach ; 1 ; 3-Dipolar cycloadditions ; Reaction mechanisms ; Valence-bond theory
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract. The electronic mechanism for the gas-phase 1,3-dipolar cycloaddition of fulminic acid (HCNO) to ethyne is studied through a combination of modern valence-bond theory in its spin-coupled (SC) form and intrinsic reaction coordinate calculations utilizing a complete-active-space self-consistent field wavefunction. It is shown that the concerted reaction follows a “heterolytic” route, during which three orbital pairs corresponding to three distinct bonds in the reactants (an in-plane π bond in ethyne, and a C-N and an N-O in-plane bond in HCNO) shift simultaneously to create the two new bonds closing the isoxazole ring and a nitrogen lone pair. The analysis of the SC wavefunction strongly suggests that the reacting system remains nonaromatic throughout the most important part of the cycloaddition process. This investigation provides the first demonstration of an alternative SC description of a bond rearrangement, achieved through the movement of singlet orbital pairs through space, during which at least one of the orbitals within a pair becomes completely detached from the atomic centre with which it is associated initially and ends up localized about another centre.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...