Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 27 (1998), S. 139-157 
    ISSN: 0271-2091
    Keywords: hydrodynamic stability ; finite element method ; incompressible cavity flow ; Arnold's method ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Numerical methods have been applied to theoretical studies of instability and transition to turbulence. In this study an analysis of the linear stability of incompressible flow is undertaken. By means of the finite element method the two-dimensional base flow is computed numerically over a range of Reynolds numbers and is perturbed with three-dimensional disturbances. The partial differential equations governing the evolution of perturbation are obtained from the non-linear Navier-Stokes equations with a slight compressibility by using linear stability and normal mode analysis. In terms of the finite element discretization a non-singular generalized eigenproblem is formulated from these equations whose solution gives the dispersion relation between complex growth rate and wave number. This study presents stability curves to identify the critical Reynolds number and critical wavelength of the neutral mode and discusses the mechanism of instability. The stability of lid-driven cavity flow is examined. Taylor-Göertler-like vortices in the cavity are obtained by means of reconstruction of three-dimensional flows. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 28 (1998), S. 95-112 
    ISSN: 0271-2091
    Keywords: square columns in tandem ; finite element method ; improved BTD ; 3D computation ; aerodynamic characteristics ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Two- (2D) and three-dimensional (3D) finite element analyses for flow around two square columns in tandem arrangement were performed with various column spacings and Reynolds numbers. The computed values were compared with the wind-tunnel results in terms of the aerodynamic characteristics of the leeward column. In most 2D computations, strong vortices were formed behind the windward column, irrespective of widely changed Reynolds numbers. This was different from the experimental phenomena of equivalent spacing, so that the computed time-averaged pressure coefficients were not identical to the experimental values except when the distance between the two columns was adequately wide or narrow. On the other hand, in 3D computation, distinct differences in flow structures behind the column were observed between Reynolds numbers of 103 and 104 and the pressure coefficient in the 3D analysis with Re=104 agreed well with the experimental value. Thus, the effectiveness of 3D computations and Reynolds number effects on the flow around two square columns have been confirmed. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...