Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 45Ca-uptake  (1)
  • Organotins  (1)
  • 1
    ISSN: 1432-1912
    Schlagwort(e): Amiodarone ; Desethylamiodarone ; Free Ca2+ ; Fura-2 ; Synaptosomes ; 45Ca-uptake ; Inositol phosphates
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary Long term amiodarone (AM) therapy has been associated with several side effects including neurotoxicity. Since AM alters Ca2+ regulated events, we have studied its effects on the compartmentation of free Ca2+ in the synaptosomes as an attempt to understand the mechanism of AM and its metabolite, desethylamiodarone (DEA)-induced neurotoxicity. Intact brain synaptosomes were prepared from male Sprague-Dawley rats. Both AM and DEA produced a concentration dependent increase in intrasynaptosomal free Ca2+ concentration ([Ca2+]i) to micromolar levels. The increase in [Ca2+]i was not transient and a steady rise was observed with time. Omission of Ca2+ from the external medium prevented the AM- and DEA-induced rise in [Ca2+]i suggesting that AM and DEA increased the intracellular [Ca2+]i due to increased influx of Ca2+ from external medium. AM- and DEA-induced increase in intrasynaptosomal [Ca2+]i was neither inhibited by a calcium channel blocker, verapamil, nor with a Na+ channel blocker, tetrodotoxin. However, the blockade of [Ca2+]i rise by AM and DEA was observed with MK-801, a receptor antagonist indicating that AM and DEA induced rise in [Ca2+]i is through receptor mediated channel. Both AM and DEA also inhibited N-methyl-D-aspartic acid (NMDA)-receptor binding in synaptic membranes in a concentration dependent manner, DEA being more effective, indicating that AM and DEA compete for the same site as that of NMDA and confirm the observation that these drugs increase intrasynaptosomal [Ca2+]i through receptor mediated channel. 45Ca accumulation into brain microsomes and mitochondria was significantly inhibited by AM and DEA, but without any effect on the Ca2+ release from these intracellular organelles. Also, both these drugs did not interfere with inositol 1,4,5-trisphosphate induced Ca2+ release from microsomes even at 10 μM concentration. These results clearly indicate that both AM and DEA increase intrasynaptosomal [Ca2+]i by an action on receptor mediated channel in plasma membrane, but not due to the release of Ca2+ from intracellular storage sites. This initial rise in [Ca2+]i, together with other changes in Ca2+ homeostasis, might be responsible for AM and DEA-induced neurotoxicity.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1432-0738
    Schlagwort(e): Organotins ; 45Ca uptake ; Ca2+-ATPase ; Protein phosphorylation ; Heart ; Sarcoplasmic reticulum-cAMP
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract Organotin compounds have been shown to interfere with cardiovascular system. We have studied the in vitro and in vivo effects of tributyltin bromide (TBT), triethyltin bromide (TET) and trimethyltin chloride (TMT) on the cardiac SR Ca2+ pump, as well as on protein phosphorylation of SR proteins, in order to understand the relative potency of these tin compounds. All the three tin compounds inhibited cardiac SR45Ca uptake and Ca2+-ATPase in vitro in a concentration-dependent manner. The order of potency for Ca2+-ATPase as determined by IC50, is TBT (2 μM) 〉 TET (63 μM) 〉 TMT (280 μM). For45Ca uptake, it followed the same order i.e., TBT (0.35 μM) 〉 TET (10 μM) 〉 TMT (440 μM). In agreement with the in vitro results, both SR Ca2+-ATPase and45Ca uptake were significantly inhibited in rats treated with these tin compounds, indicating that these tin compounds inhibit cardiac SR Ca2+ transport. cAMP significantly elevated (70–80%) the32P-binding to SR proteins in vitro in the absence of any organotin. In the presence of organotins, cAMP-stimulated32P-binding to proteins was significantly reduced, but the decrease was concentration dependent only at lower concentrations. The order of potency is TBT 〉 TET 〉 TMT. In agreement with in vitro studies, cAMP-dependent32P bound to proteins was significantly reduced in rats treated with TBT, TET and TMT. SDS-polyacrylamide gel electrophoresis of the cardiac SR revealed at least 30 Coomassie blue stainable bands ranging from 9 to 120 kDa. Autoradiographs from samples incubated in the presence of cAMP indicated32P incorporation in seven bands. Of these, the band corresponding to about 24 kDa molecular weight protein decreased in its intensity with the treatment of organotins. These results suggest that triorganotins may be affecting Ca2+ pumping mechanisms through the alteration of phosphorylation of specific proteins in rat cardiac SR.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...