Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 356 (1997), S. 446-454 
    ISSN: 1432-1912
    Schlagwort(e): Key words [3H]MDL100 ; 907 ; 5-HT2A receptors ; Rat brain ; Autoradiography ; in situ hybridization ; [3H]ketanserin ; [3H]mesulergine ; [3H]RP62203
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract The recently developed 5-HT2A receptor selective antagonist [3H]MDL100,907 ((+/–)2,3-dimethoxyphenyl-1-[2-(4-piperidine)-methanol]) has been characterized as a radioligand for the autoradiographic visualization of these receptors. [3H]MDL100,907 binding to rat brain tissue sections was saturable, had sub-nanomolar affinity (Kd=0.2–0.3nM), and presented a pharmacological profile consistent with its binding to 5-HT2A receptors (rank order of affinity for [3H]MDL100,907-labelled receptors: MDL100,907 〉 spiperone 〉 ketanserin 〉 mesulergine). The distribution of receptors labelled by [3H]MDL100,907 was compared to the autoradiographical patterns obtained with [3H]Ketanserin, [3H]Mesulergine, and [3H]RP62203 (N-[3-[4-(4-fluorophenyl)-piperazin-1-y1]propyl]-1,8-naphtalenesultam) and to the distribution of 5-HT2A receptor mRNA as determined by in situ hybridization. As opposed to the other radioligands, [3H]MDL100,907 labelled a single population of sites (5-HT2A receptors) and presented extremely low levels of non-specific binding. The close similarity of the distributions of [3H]MDL100,907-labelled receptors and 5-HT2A mRNA further supports the selectivity of this radioligand for 5-HT2A receptors and suggests a predominant somatodendritic localization of these receptors. The present results point to [3H]MDL100,907 as the ligand of choice for the autoradiographic visualization of 5-HT2A receptors.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 348 (1993), S. 221-224 
    ISSN: 1432-1912
    Schlagwort(e): Rat 5-HT1C receptors ; A9 cells ; Desensitization ; Calcineurin
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary Functional responses to stimulation of rat 5-HT1C receptors expressed in A9 cells were studied using whole cell voltage clamp recording technique. Stimulation of 5-HT1C receptors with serotonin (5-HT) evoked calcium-dependent outward currents of 109 pA in cells clamped at — 50 mV. Pretreatment with the protein kinase C (PKC) activator phorbol myristic acetate (PMA) reduced the 5-HT-induced current amplitude by 46% of the control value. Inclusion of inositol triphosphate (IP3) in the pipette solution induced an outward current of 84 pA. The IP3-induced response was not affected by 60 min pretreatment with PMA. In the presence of the PKC antagonist calphostin C, 60 min treatment with PMA (10−6 mol/1) reduced the 5-HT response only by 8%. In cells preincubated with PMA, injection of the calcium/calmodulin dependent serine proteinphosphatase calcineurin gradually increased the 5-HT-induced responses by 34%. In A9 cells which were incubated 24 h with the 5-HT1C receptor agonist meta chlorophenylpiperazine hydrochloride (mCPP), 5-HT-induced responses were reduced by 23% of the vehicle pretreated control value. Injection of calcineurin in mCPP treated cells enhanced the 5-HT-induced response by 24%. The results suggest that in A9 cells rat 5-HT1C receptors are desensitized after phosphorylation by PKC. This desensitization can be counteracted by calcineurin-induced: dephosphorylation.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...