Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Key words:Agrobacterium (6b gene) ; 6b gene ; Cytokinin resistance ; Nicotiana (transformed) ; Transgenic plant (tobacco)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. The 6b gene of Agrobacterium tumefaciens has been demonstrated to modify the activity of the plant growth regulators, auxin and cytokinin. To study the possible mode of action of the gene, tobacco (Nicotiana tabacum L. cv. Samsun) plants were transformed with the A. tumefaciens C58-6b gene. Seeds obtained from morphologically normal transgenic as well as wild-type plants were germinated on media supplemented with growth-inhibitory levels of cytokinin, N6-benzyladenine (BA). The transgenic seedlings showed increased resistance to cytokinins, as reflected by continuous shoot development, whereas further growth of the wild-type plants beyond the cotyledonary stage was inhibited. Concurrently, the levels of 6b gene transcripts in transgenic seedlings increased greatly upon BA treatment. Since glucosylation of BA represents the main inactivation mechanism of the hormone, we analyzed BA glucoside formation during the early stages of seedling growth. Intracellular levels of the major BA metabolite, N6-benzyladenine-7-glucoside (80–92%), as well as other BA-derived components were found to be comparable in transgenic and wild-type seedlings. Therefore, increased resistance of the C58-6b transgenic seedlings to cytokinins could not be directly attributed to enhanced BA glucosylation and subsequent hormone inactivation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...