Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Applied physics 43 (1987), S. 53-60 
    ISSN: 1432-0630
    Keywords: 72.15 ; 79.20
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract A calculation has been carried out for the drift velocity of electrons in the highfield region under the condition of impact ionization in III–V semiconductor compounds. The energy-balance equation of the one-electron model has been solved considering alloy scattering and carrier-carrier interaction, in addition to optical phonon and ionization scattering. Fairly good agreement is obtained for GaAs with the available experimental and Monte-Carlo results. Graphs for the high-field drift velocity has also been plotted for Ga1−x InxAs (x = 0.53) at different ratios of ionization mean-free path and optical phonon mean-free path. The plot of high-field drift velocity versus ionization rate reveals that the high-field drift velocity strongly depends on the ionization rate of carriers, and vice versa.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Applied physics 43 (1987), S. 105-109 
    ISSN: 1432-0630
    Keywords: 72.15 ; 79.20
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Theoretical calculations are presented for the ionization rate of electrons in III–V ternary semiconductor compounds considering alloy scattering and carrier-carrier interaction, in addition to optical phonon scattering and ionization scattering. However, alloy scattering is found to be a weak interaction. Fairly good agreement is obtained for Ga1−x In x As withx=0.14 and 0.53 with the experimental results and for Ga0.5 Al0.5 As with the existing theoretical result which used an indirect method. The alloy scattering potential has been taken in the form of energy band-gap difference. The calculations can be used for any ternary semi-conductor.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...