Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 72.40  (1)
  • 1
    ISSN: 1432-0630
    Keywords: 86.30 ; 72.40 ; 73.60
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract The electroreflectance (ER) signal has been studied for the purpose of identifying the built-in field in practical amorphous silicon (a-Si∶H) solar cells. Through both theoretical and experimental considerations, it has been confirmed that the ER signal essentially comes from the light which is reflected at the back surface and hence experiences the internal electric field within thea-Si∶H layer. By analyzing the ER signal, which is really the back-surface reflected electroabsorption signal, the built-in potentialV bcan be evaluated. This method has been applied to various types ofp-i-n junctiona-Si solar cells.V bof a usual homojunction solar cell was about 0.85 V. Increases ofV bby 50≈130mV have been found in heterojunction solar cells constructed withp-type amorphous silicon carbide (a-SiC∶H) and/orn-type microcrystalline silicon (μc-Si) as compared with homojunctionp-i-n solar cells. Moreover, a clear dependence ofV bon the substrate materials has been observed. These experimental results are described in connection with cell performances.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...