Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0630
    Keywords: 68.55 ; 61.70 ; 74.70
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Ultrathin epitaxial films of YBa2Cu3O7−δ on SrTiO3 prepared by Direct Current (DC) sputtering and pulsed laser deposition were imaged by Atomic Force Microscopy (AFM) to follow the different stages of growth of the thin films. Series of films with thicknesses between 1.2 nm and 12 nm (1–10 monolayers of YBa2Cu3O7−δ) were prepared under identical conditions, optimized with respect to electrical and structural properties, to obtain information on the mechanisms responsible for the formation of growth spirals which are commonly observed in films having a thickness of several 10 nm or more. It could be shown that few layers are formed by a layered growth mode where material is attached laterally to 2D islands which are only one c-axis unit cell in height. In a later stage of growth when about 8–10 layers have been formed, the growth process changes to a mode which is mediated by growth spirals. This could be directly monitored in the AFM images where different defect structures like vertically sheared growth fronts and dendrite-like terraces of stacked islands as well as the resulting growth spirals could be identified.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...