Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Applied physics 44 (1987), S. 313-322 
    ISSN: 1432-0630
    Schlagwort(e): 82.50 ; 81.60 ; 82.30
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Maschinenbau , Physik
    Notizen: Abstract Studies have been made of poly- and single Si etching induced by excimer-laser irradiation of the silicon surfaces in halogenated gases. Etching was investigated for different conduction types, impurity concentrations and crystallographic planes. Chlorine atoms accept electrons generated in photoexcited, undoped p-type Si, thus becoming negative ions which are pulled into the Si. However, the n+-type Si is etched spontaneously by Cl− as a result of the availability of conduction electrons. Fluorine atoms, with the highest electronegativity, take in electrons independent of whether the material is n- or p-type. And thus, the easy F− ion penetration into Si causes spontaneous etching in both types. New anisotropic etching for n+ poly-Si is investigated because of its importance to microfabrication technology. Methyl methacrylate (MMA) gas, which reacts with Cl atoms, produces a deposition film on the n+ poly-Si surface. The surface, from which the film is removed by KrF (5 eV) laser irradiation, is etched by Cl atoms, while the film remains on the side wall to protect undercutting. However, with the higher photon energy for the ArF (6.4 eV) laser, the Si-OH bonds are broken and electron traps are formed. These electrontrapping centers are easily annealed out in comparison to the plasma-induced centers. Pattern transfer etching for n+ poly-Si has been realized using reflective optics. The problems involved in obtaining finer resolution etching are discussed.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Protoplasma 206 (1999), S. 219-223 
    ISSN: 1615-6102
    Schlagwort(e): Caspases ; Tumor necrosis factor ; Oligodendrocytes ; Cell death
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Summary Oligodendrocytes are myelin-forming cells in the mammalian central nervous system. About 50% of oligodendrocytes undergo cell death in normal development. In addition, massive oligodendrocyte cell death has been observed in multiple sclerosis. Tumor necrosis factor (TNF) is thought to be one of the mediators responsible for the damage of oligodendrocytes in multiple sclerosis. The addition of TNF-α to primary cultures of oligodendrocytes significantly decreased the number of live cells in 72 h. DNA fragmentation was detected in TNF-treated oligodendrocytes at 36 h by TUNEL assay. Chemical inhibitors Ac-YVAD-CHO (a specific inhibitor of caspase-1 [ICE]-like proteases) as well as Ac-DEVDCHO (a specific inhibitor of caspase-3[CPP32]-like proteases) enhanced the survival of oligodendrocytes treated with TNF-α, indicating that caspase-1- and the caspase-3-mediated cell-death pathways are activated in TNF-induced oligodendrocyte cell death. Caspase-11 is involved in activation of caspase-1. Oligodendrocytes fromCASP-11-deficient mice are partially resistant to TNF-induced oligodendrocyte cell death. Our results suggest that the inhibition of caspases may be a novel approach to treat multiple sclerosis.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...